Set theory in infinitary languages

  • K. Gloede
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 499)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BARWISE, J. 1968a Implicit definability and compactness in infinitary languages, in: The syntax and semantics of infinitary languages (ed. by J. Barwise), 1–35. Lecture Notes in Mathematics, Vol. 72, Springer-Verlag, Berlin-Heidelberg-New York (1968)Google Scholar
  2. -1969a Infinitary logic and admissible sets, Journ. Symb. Logic 34 (1969), 226–252zbMATHMathSciNetCrossRefGoogle Scholar
  3. -1969b Applications of strict ∏11 predicates to infinitary logic, Journ. Symb. Logic 34 (1969), 409–423zbMATHMathSciNetCrossRefGoogle Scholar
  4. BARWISE, J., GANDY, R.O. and MOSCHOWAKIS, Y.N. 1971 The next admissible set, Journ. Symb. Logic 36 (1971), 108–120zbMATHCrossRefGoogle Scholar
  5. BOWEN, K.A. 1973 Infinite forcing and natural models of set theory, Bull. Acad. Polon. Sci. XXI, 3 (1973), 195–199.MathSciNetGoogle Scholar
  6. CHANG, C.C. 1971 Sets constructible using Lkk, in: SCOTT 1971, 1–8Google Scholar
  7. FELGNER, U. 1971 Models of ZF-set theory, Lecture Notes in Mathematics, Vol. 223, Springer-Verlag, Berlin-Heidelberg-New York (1971), VI + 173 pp.zbMATHGoogle Scholar
  8. GLOEDE, K. 1971 Filters closed under Mahlo's and Gaifman's operation, in: Proc. Cambridge Summer School in Mathematical Logic (ed. by A.R.D. Mathias and H. Rogers), 495–530. Lecture Notes in Maths, Vol. 337. Springer-Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  9. GLOEDE, K. 1974 Mengenlehre in infinitären Sprachen, Universität Heidelberg (1974), 188 pp.Google Scholar
  10. GÖDEL, K. 1940 The consistency of the axiom of choice and the generalized continuum hypothesis, Annals of Math. Studies 3, Princeton, N. J. (2nd printing 1951, 74 pp.)Google Scholar
  11. JENSEN, R. B. and KARP, C. 1971 Primitive recursive set functions in: SCOTT 1971, 143–167Google Scholar
  12. KARP, C. 1964. Languages with expressions of infinite length, North-Holland Publ. Co., Amsterdam (1964), IX + 183 pp.zbMATHGoogle Scholar
  13. KEISLER, J.H. 1971 Model theory for infinitary logic, North-Holland Publ. Co., Amsterdam (1971), X + 208 pp.zbMATHGoogle Scholar
  14. LEVY, A. 1960 Axiom schemata of strong infinity in axiomatic set theory, Pacific J. Math. 10 (1960), 223–238zbMATHMathSciNetGoogle Scholar
  15. LEVY, A. 1965 A hierarchy of formulas in set theory, Memoirs Am. Math. Soc. 57, Providence, R.I., 76 pp.Google Scholar
  16. MOSTOWSKI, A. 1949 An undecidable arithmetical statement, Fund. Math. 36 (1949), 143–164zbMATHMathSciNetGoogle Scholar
  17. REINHARDT, W.N. 1970 Ackermann's set theory equals ZF, Annals of Math. Logic 2 (1970), 189–249zbMATHMathSciNetCrossRefGoogle Scholar
  18. SCOTT, D. 1971 (editor) Axiomatic set theory. Proc. of Symposia in Pure Mathematics 13, Providence, R.I.Google Scholar
  19. SCOTT, D. and MYHILL, J. 1971 Ordinal definability, in SCOTT 1971, 271–278Google Scholar
  20. TARSKI, A., MOSTOWKI, A. and ROBINSON, R.M. 1953 Undecidable theories. North-Holland Publ. Co., Amsterdam (1953), 98 pp.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • K. Gloede
    • 1
  1. 1.Mathematisches Institut der Universität HeidelbergHeidelbergGermany

Personalised recommendations