Advertisement

Lectures on large cardinal axioms

  • William Boos
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 499)

Keywords

Measurable Cardinal Transitive Model Elementary Embedding Supercompact Cardinal Uncountable Cardinal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ba Baumgartner, J., Ineffability properties of cardinals I, Proceedings of the International Colloquium on Infinite and Finite Sets, to appear.Google Scholar
  2. Bo Boos, W., Infinitary compactness without strong inaccessibility, Journal of Symbolic Logic, to appear.Google Scholar
  3. Ch-Ke Chang, C. C. and Keisler, H. J., Model Theory, North Holland (1973).Google Scholar
  4. De 1 Devlin, K., Some weak versions of large cardinal axioms, Annals of Mathematical Logic, 5, 291–325 (1973).zbMATHMathSciNetCrossRefGoogle Scholar
  5. De 2 Devlin, K., Aspects of Constructibility, Lecture Notes in Mathematics, Springer (1973).Google Scholar
  6. De 3 Devlin, K., Indescribability Properties and small large cardinals, this volume.Google Scholar
  7. Dr Drake, F., Set Theory: An Introduction to Large Cardinals, North Holland (1973).Google Scholar
  8. Eh-Mo Ehrenfeucht, A. and Mostowski, A., Models of axiomatic theories admitting autimorphisms, Fundamenta Mathematicae, 43, 50–68 (1956).zbMATHMathSciNetGoogle Scholar
  9. Ga Gaifman, H., Pushing up the measurable cardinal, typescript; a revised version appeared as part of Elementary Embeddings of the Models of Set Theory and Certain Subtheories, Proceedings of Symposia in Pure Mathematics, 13(2), American Mathematical Society, 33–103 (1974).MathSciNetGoogle Scholar
  10. Gl Gloede, K., Ordinals with partition properties and the constructible hierarchy, Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 18, 135–164 (1972).zbMATHMathSciNetGoogle Scholar
  11. Jec Jech, T. Some combinatorial problems concerning large cardinals, Annals of Mathematical Logic, 5, 165–198 (1973).zbMATHMathSciNetCrossRefGoogle Scholar
  12. Jen 1 Jensen, R., Grosse Kardinalzahlen, manuscript of lectures at Oberwolfach (1967).Google Scholar
  13. Jen 2 Jensen, R., Some combinatorial properties of L and V, manuscript.Google Scholar
  14. Ke Ketonen, J., Some combinatorial properties, Transactions of the American Mathematical Society, 188, 387–394 (1974).zbMATHMathSciNetCrossRefGoogle Scholar
  15. Ku 1 Kunen, K., Some applications of iterated ultrapowers in set theory, Annals of Mathematical Logic, 1, 179–227.Google Scholar
  16. Ku 2 Kunen, K., Indescribability and the continuum, in Proceedings of Symposia in Pure Mathematics, 13(1), American Mathematical Society, 199–204 (1971).Google Scholar
  17. Ku 3 Kunen, K., Elementary embeddings and infinitary combinatorics, Journal of Symbolic Logic, 36, 407–413 (1971).zbMATHMathSciNetCrossRefGoogle Scholar
  18. Ku 4 Kunen, K., A model for the negation of the axiom of choice, in Lecture Notes in Mathematics, 337, 489–493 (1973).Google Scholar
  19. Lé Lévy, A., The sizes of the indescribable cardinals, in Proceedings of Symposia in Pure Mathematics, 13(1), American Mathematical Society, 205–218 (1971).Google Scholar
  20. Ma Magidor, M., On the role of supercompact and extendible cardinals in logic, Israel Journal of Mathematics, 10, 147–157 (1971).zbMATHMathSciNetGoogle Scholar
  21. Pr Prikry, K., Changing measurable into accessible cardinals, Dissertationes Mathematicae, 68 (1970).Google Scholar
  22. Sa Sacks, G., Saturated Model Theory, Benjamin (1972).Google Scholar
  23. Si 1 Silver, J., Some applications of model theory in set theory, Dissertation, University of California (Berkeley) (1966); appeared in revised form in Annals of Mathematical Logic, 3, 45–110 (1971).zbMATHMathSciNetGoogle Scholar
  24. Si 2 Silver, J., The consistency of the G. C. H. with the existence of a measurable cardinal, in Proceedings of Symposia in Pure Mathematics, 13(1), 397–428 (1971).Google Scholar
  25. So 1 Solovay, R., A non-constructible Δ31 set of integers, Transactions of the American Mathematical Society, 127, 58–75 (1967).MathSciNetCrossRefGoogle Scholar
  26. So 2 Solovay, R., Real-valued measurable cardinals, in Proceedings of Symposia in Pure Mathematics, 13(1), 397–428 (1971).Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • William Boos
    • 1
  1. 1.Iowa CityUSA

Personalised recommendations