Fourier transforms on a semisimple Lie algebra over Fq

  • George Lusztig
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1271)


Direct Summand Parabolic Subgroup Nilpotent Element Nilpotent Orbit Levi Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BR]
    P. Bardsley, R.W. Richardson: Étale slices for algebraic transformation groups in characteristic p, Proc. Lond. Math. Soc. 51(1985), 295–317.MathSciNetCrossRefMATHGoogle Scholar
  2. [BBD]
    A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1982), Société Mathématique de France.Google Scholar
  3. [B]
    J.L. Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformation de Fourier et sommes trigonometriques, preprintGoogle Scholar
  4. [HK]
    R. Hotta, M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Inv. Math. 75(1984) 327–358.MathSciNetCrossRefMATHGoogle Scholar
  5. [KLa]
    N. Katz, G. Laumon, to appear in Publ. Math. I.H.E.S.Google Scholar
  6. [Kw]
    N. Kawanaka, Generalized Gelfand — Graev representations of exceptional simple algebraic groups over a finite field, preprint.Google Scholar
  7. [Kz]
    D. Kazhdan, Proof of Springer's hypothesis. Israel J. Math. 28(1977) 272–286.MathSciNetCrossRefMATHGoogle Scholar
  8. [L1]
    G. Lusztig, Intersection cohomology complexes on a reductive group, Inv. Math. 75(1984), 205–272.MathSciNetCrossRefMATHGoogle Scholar
  9. [L2]
    G. Lusztig, Character sheaves, I Adv. in Math. 56(1985), 193–237, II Adv. in Math. 57(1985) 226–265, III Adv. in Math. 57(1985) 266–315, IV Adv. in Math. 59(1986), 1–63, V to appear in Adv. in Math.MathSciNetCrossRefMATHGoogle Scholar
  10. [S]
    T.A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Inv. Math. 36(1976), 173–207.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • George Lusztig
    • 1
    • 2
  1. 1.M.I.T.CambridgeUSA
  2. 2.II Università degli studi di RomaItaly

Personalised recommendations