Etale local structure of matrix invariants and concomitants

  • Lieven Le Bruyn
  • Claudio Procesi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1271)


Irreducible Component Polynomial Ring Closed Orbit Singular Locus Closed Subvariety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ar]
    Artin M.; On Azumaya algebras and finite dimensional representations of rings; J.Alg 11 (1969),pp 532–563MathSciNetCrossRefzbMATHGoogle Scholar
  2. [AS]
    Artin M.,Schelter W.; Integral ring homomorphisms; Adv. Math 39 (1981),pp 289–329MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Hb]
    Hoobler R.; When is Br(X) = Br′(X)?; Springer LNM 917 (1982),pp 231–244MathSciNetzbMATHGoogle Scholar
  4. [Ho]
    Hochster M.; Rings of invariants of tori,Cohen-Macaulay rings generated by monomials and polytopes; Ann. Math 96 (1972),pp 318–337MathSciNetCrossRefzbMATHGoogle Scholar
  5. [HR]
    Hochster M.,Roberts J.; Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay; Adv. Math 13 (1974),pp 115–175MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Le]
    Le Bruyn L.; Trace rings of generic 2 by 2 matrices; Memoirs AMS (to appear)Google Scholar
  7. [Lu]
    Luna D.; Slices étales; Bull Soc Math France Mém 33 (1973),pp 81–105zbMATHGoogle Scholar
  8. [LV]
    Le Bruyn L.,Van den Bergh M.; Regularity of trace rings of generic matrices; J.Alg (to appear)Google Scholar
  9. [Mo]
    Morrison K.; The scheme of finite dimensional representations of an algebra; Pac. J Math 91 (1980),pp 199–218MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Mu]
    Mumford D.; Geometric invariant theory; Springer (1965)Google Scholar
  11. [Ma]
    Matsuchima Y.; Espaces homogènes de Stein des groupes de Lie complexes; Nagoya Math J 16 (1960),pp 205–218MathSciNetCrossRefGoogle Scholar
  12. [Pr]
    Procesi C.; Finite dimensional representations of algebras; Israel J Math 19 (1974),pp 169–182MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Pr2]
    Procesi C.; Invariant theory of n by n matrices; Adv. Math 19 (1976),pp 306–381MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Pr3]
    Procesi C.; Rings with polynomial identities; Marcel Dekker (1973)Google Scholar
  15. [Sc]
    Schwartz G.; Lifting smooth homotopies of orbit spaces; Publ IHESGoogle Scholar
  16. [SS]
    Small L.,Stafford J.T.; Homological properties of generic matrices; Israel J Math (1985)Google Scholar
  17. [St]
    Stanley R.; Linear diophantine equations and local cohomology; Inv. Math 68 (1982),pp 175–193MathSciNetCrossRefzbMATHGoogle Scholar
  18. [St2]
    Stanley R.; Combinatorics and commutative algebra; Birkhäuser PM 41 (1983)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Lieven Le Bruyn
    • 1
  • Claudio Procesi
    • 2
  1. 1.University of AntwerpBelgium
  2. 2.University of RomeItaly

Personalised recommendations