Restricted lie algebra cohomology

  • J. C. Jantzen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1271)

Abstract

The cohomology of restricted Lie algebras was first defined by Hochschild in 1954, cf.[11]. It was however only recently that one could get more precise information about these cohomology groups in non-trivial cases. The most fascinating result is still the theorem (proved by Friedlander and Parshall) that for large p the cohomology ring of the Lie algebra of a reductive algebraic group is the ring of regular functions on the nilpotent cone in this Lie algebra. It is the purpose of this article to give a survey of recent developments in this theory.

Throughout this paper let k be an algebraically closed field with char(k)=p≠0.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.H. Andersen,J.C. Jantzen: Cohomology of induced representations of algebraic groups, Math.Ann.269(1984), 487–525MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    D. Benson: Modular Representation Theory: New Trends and Methods, Lecture Notes in Mathematics 1081, Berlin/Heidelberg/New York/Tokyo 1984(Springer)MATHGoogle Scholar
  3. [3]
    N. Bourbaki: Groupes et algèbres de Lie, chap.4,5 et 6, Paris 1968 (Hermann)MATHGoogle Scholar
  4. [4]
    M. Demazure,P. Gabriel: Groupes Algébriques I, Paris/Amsterdam 1970 (Masson/North-Holland)MATHGoogle Scholar
  5. [5]
    E. Friedlander,B. Parshall: Cohomology of algebraic and related finite groups, Invent.math.74(1983), 85–117MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    E. Friedlander,B. Parshall: Cohomology of Lie algebras and algebraic groups, Amer.J.Math.108(1986), 235–253MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    E. Friedlander,B. Parshall: Cohomology of infinitesimal and discrete groups, Math.Ann.273(1986), 353–374MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    E.Friedlander,B.Parshall: Geometry of p-unipotent Lie algebras, J.Algebra (to appear)Google Scholar
  9. [9]
    E.Friedlander,B.Parshall: Support varieties for restricted Lie algebras, to appearGoogle Scholar
  10. [10]
    W. Hesselink: Cohomology and the resolution of the nilpotent variety, Math.Ann.223(1976), 249–252MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    G. Hochschild: Cohomology of restricted Lie algebras, Amer.J.Math. 76(1954), 555–580MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    N. Jacobson: Lie Algebras, New York/London/Sydney 1962 (Intersciene/Wiley)MATHGoogle Scholar
  13. [13]
    J.C. Jantzen: Kohomologie von p-Lie-Algebren und nilpotente Elemente, Abh.Math.Sem.Univ.Hamburg 76(1986) (demnächst)Google Scholar
  14. [14]
    J.C.Jantzen: Representations of algebraic groups (to appear)Google Scholar
  15. [15]
    A. Kerber: Representations of Permutation Groups, Lecture Notes in Mathematics 240, Berlin/Heidelberg/New York 1971(Springer)CrossRefMATHGoogle Scholar
  16. [16]
    B. Kostant: Lie group representations on polynomial rings, Amer.J. Math.85(1963), 327–404MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    T.A. Springer: The unipotent variety of a semi-simple algebraic group, pp.373–391 in: Algebraic Geometry (Proc. Bombay 1968), London 1969 (Oxford Univ.Press)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. C. Jantzen
    • 1
  1. 1.Mathematisches SeminarUniversität HamburgHamburg 13

Personalised recommendations