Tents and interpolating sequences in the unit ball

  • Pascal J. Thomas
Special Year Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1276)


A sufficient condition is given to make a sequence of points interpolating for H(Bn). The methods are elementary: construction of the P. Beurling functions. This can be used to prove the sharpness of the exponent of Varopoulos’s necessary condition for interpolation. The result is also compared with Berndtsson’s recent sufficient condition, in conjunction with which it gives a slightly improved theorem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Berndtsson, B., Interpolating sequences for H in the ball, Nederl. Akad. Wetensch, Indag. Math. 88 (1985).Google Scholar
  2. [2]
    Carleson, L., An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), pp. 921–930.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Garnett, J., Bounded Analytic Functions, Academic Press, 1981.Google Scholar
  4. [4]
    Hörmander, L., Lp estimates for plurisubharmonic functions, Math. Scand. 20 (1967), pp. 65–78.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Jones, P., L-estimates for the \(\bar \partial\)-problem in a half-plane, Acta Math. 150 (1983), pp. 137–152.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Mantero, A.M., Sur la condition de Carleson dans la boule unité de Cm, Boll. Un. Mat. Ital. (1983), 163–169.Google Scholar
  7. [7]
    Rudin, W., Function Theory in the Unit Ball of ℂ n, Springer-Verlag, 1980.Google Scholar
  8. [8]
    Thomas, P.J., Interpolating sequences of complex hyperplanes in the unit ball of Cn, to appear in Ann. Inst. Fourier (Grenoble) 36 (1986), No. 4.Google Scholar
  9. [9]
    Varopoulos, N.Th., Sur la réunion de deux ensembles d’interpolation d’une algèbre uniforme, C.R. Acad. Sci. Paris, Ser. A 272 (1970), pp. 950–952.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Varopoulos, N.Th., Sur un problème d’interpolation, C.R. Acad. Sci. Paris Ser. A 274 (1972), pp. 1539–1542.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Pascal J. Thomas
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaLos Angeles
  2. 2.Department of MathematicsOccidental CollegeLos Angeles

Personalised recommendations