Problem section

  • M. Cwikel
  • J. Peetre
  • V. V. Peller
  • R. Rochberg
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1302)


Rational Approximation Toeplitz Operator Besov Space Interpolation Space Infinite Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Calderón, A.P.: Intermediate spaces and interpolation, the complex method, Studia Math. 24, 113–190 (1964).zbMATHMathSciNetGoogle Scholar
  2. [2]
    Coifman, R.R., Cwikel, M., Rochberg, R., Sagher, Y., Weiss, G.: A theory of complex interpolation for families of Banach spaces, Adv. in Math. 43, 203–229 (1982).CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Cwikel, M., Janson, S.: Real and complex interpolation methods for finite and infinite families of Banach spaces; Adv. in Math. (to appear).Google Scholar


  1. [1]
    Cwikel, M., Fisher, S.D.: Complex interpolation spaces on multiply connected domains. Adv. in Math. 48, 286–294 (1983).CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Cwikel, M., Janson, S.: Real and complex interpolation methods for finite and infinite families of Banach spaces. Adv. in Math. (to appear).Google Scholar
  3. [3]
    Guillemin, V.: Toeplitz operators in n-dimensions. Integral Equations Operator Theory 7, 145–205 (1984).CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Hawley, N., Schiffer, M.: Half-order differentials on Riemann surfaces. Acta Math. 115, 199–236 (1966).CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    Hörmander, L.: The analysis of linear partial differential operators III. Grundlehren 274. Berlin etc.: Springer 1985.Google Scholar
  6. [6]
    Janson, S., Peetre, J., Rochberg, R.: Hankel forms and the Fock space. Technical report. Uppsala 1986. (Submitted to Ann. Math.)Google Scholar
  7. [7]
    Peetre, J.: Hankel operators, rational approximation and allied questions in analysis. In: Second Edmonton Conference on Approximation Theory. C.M.S. Conference Proceedings 3, pp. 287–332. A.M.S.: Providence 1983.Google Scholar
  8. [8]
    Peetre, J.: Paracommutators and minimal spaces. In: S.C. Power (ed.), Operators and function theory, pp. 163–224. Dordrecht: Reidel 1985.CrossRefGoogle Scholar
  9. [9]
    Peetre, J., Karlsson, J.; Rational approximation — analysis of the work of Pekarskiǐ. (Report prepared for the Edmonton conference, July 1986.)Google Scholar
  10. [10]
    Pekarskiǐ, A.A.: Inequalities of Bernstein type for derivatives of rational functions and converse theorems for rational approximation. Mat. Sb. 124, 571–588 (1984) [Russian].MathSciNetGoogle Scholar
  11. [11]
    Pekarskiǐ, A.A.: Classes of analytic functions defined by best rational approximations. Mat. Sb. 127, 3–19 (1985) [Russian].MathSciNetGoogle Scholar
  12. [12]
    Peller, V.V.: Hankel operators of class Sp and their applications (rational approximation, Gaussian processes, the majorant problem for operators). Mat. Sb. 113, 538–581 (1980) [Russian].MathSciNetGoogle Scholar
  13. [13]
    Peller, V.V.: Continuity properties for the averaging projection onto the set of Hankel matrices. Dokl. Akad. Nauk SSSR 278, 275–281 (1984) [Russian].MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. Cwikel
    • 1
  • J. Peetre
    • 2
  • V. V. Peller
    • 3
  • R. Rochberg
    • 4
  1. 1.Haifa
  2. 2.Lund
  3. 3.Leningrad
  4. 4.St. Louis

Personalised recommendations