Advertisement

Spectral analysis in spaces of continuous functions

  • Yitzhak Weit
Contributed Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1302)

Keywords

Spectral Analysis Symmetric Space Closed Subspace Motion Group Integral Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.A. Berenstein, Spectral synthesis on symmetric spaces, to appear in Contemporary Mathematics.Google Scholar
  2. 2.
    C.A. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem, J. Analyse Math. 37 (1980), 128–144.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    C.A. Berenstein and R. Gay, A local version of the two-circles theorem, to appear.Google Scholar
  4. 4.
    C.A. Berenstein and L. Zalcman, Pompeiu’s problem on symmetric spaces, Comment. Math. Helvetici 55 (1980), 593–621.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    L. Brown, B.M. Schreiber and B.A. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier 23 (1973), 125–154.CrossRefMathSciNetGoogle Scholar
  6. 6.
    L. Ehrenpreis and F.I. Mautner, Some properties of the Fourier transform on semisimple Lie groups II, Trans. Amer. Math. Soc. 84 (1957), 1–55.zbMATHMathSciNetGoogle Scholar
  7. 7.
    D.I. Gurevich, Counterexamples to a problem of L. Schwartz, Funct. Anal. Appl. 197 (1975), 116–120.CrossRefGoogle Scholar
  8. 8.
    L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. of Math. 48 (1947), 857–928.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    A. Wawrzrynczyk, Spectral analysis and synthesis on symmetric spaces, preprint.Google Scholar
  10. 10.
    Y. Weit, On Schwartz’s theorem for the motion group, Ann. Inst. Fourier 30 (1980), 91–107.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Y. Weit, A characterization of polynomials by convolution equations, J. London Math. Soc. (2) 23 (1981), 455–459.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    L. Zalcman, Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal. 47 (1972), 237–254.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    L. Zalcman, Mean values and differential equations, Israel J. Math. 14 (1973), 339–352.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    L. Zalcman, Offbeat integral geometry, Amer. Monthly 87 (1980), 161–175.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Yitzhak Weit
    • 1
  1. 1.Department of MathematicsUniversity of HaifaIsrael

Personalised recommendations