Advertisement

Equivalent normalizations of Sobolev and Nikol’skiǐ spaces in domains. boundary values and extension

  • S. K. Vodop’yanov
Contributed Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1302)

Keywords

Function Space Equivalent Normalization Extension Operator Arbitrary Domain Rectifiable Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksandrov, A.D.: Inner geometry of convex surfaces. Moscow: Gostekhizdat 1948. [German translation of the enlarged version: Die innere Geometrie der konvexen Flächen. Berlin: Akademie-Verlag 1955].Google Scholar
  2. 2.
    Sobolev, S.L.: Applications of functional analysis in mathematical physics. Izd. Leningrad. Univ. 1950 [English translation: Providence: Amer. Math. Soc. 1963].Google Scholar
  3. 3.
    Nikol’skiǐ, S.M.: Approximation of functions of several variables and embedding theorems. Moscow: Nauka 1969 [English translation: Berlin: Springer-Verlag 1975].Google Scholar
  4. 4.
    Besov, O.V., Il’in, V.P., Nikol’skiǐ, S.M.: Integral representation of functions and embedding theorems. Moscow: Nauka 1975 [English translation: Vol. 1–2, New York: John Wiley & Sons 1979].Google Scholar
  5. 5.
    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge: Cambridge University Press 1934.Google Scholar
  6. 6.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton: Princeton University Press 1970.zbMATHGoogle Scholar
  7. 7.
    Konovalov, V.N.: Description of the traces of some classes of functions of several variables. Preprint nr. 84. 21. Kiev: Institute of mathematics 1984 (in Russian).Google Scholar
  8. 8.
    Vodop’yanov, S.K.: Geometrical properties of domains and lower bounds for the norm of the extension operator. Vsesojuziǐ seminar molodikh utchenikh po aktual’nim voprosam kompleksnogo analiza. Tashkent, Sept. 1985. Abstracts, pp. 23–24 (In Russian).Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • S. K. Vodop’yanov
    • 1
  1. 1.Novosibirsk State UniversityNovosibirskSoviet Union

Personalised recommendations