Advertisement

Banach envelopes of some interpolation quasi-banach spaces

  • Mieczysław Mastyło
Contributed Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1302)

Keywords

Topological Vector Space Bergman Space Lorentz Space Interpolation Space Real Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronszajn, N., Gagliardo, E.: Interpolation spaces and interpolation methods. Ann. Mat. Pura Appl. 68, 51–118 (1965).CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bergh, J., Lőfstrőm, J.: Interpolation spaces. An introduction. Berlin-Heidelberg-New York: Springer 1976.CrossRefzbMATHGoogle Scholar
  3. 3.
    Brudnyǐ, Ju.A., Krugljak, N.Ja.: Real interpolation functor. Dokl. Akad. Nauk SSSR 256, 14–17 (1981); Soviet Math. Dokl. 23, 5–8 (1981).MathSciNetGoogle Scholar
  4. 4.
    Brudnyǐ, Ju. A., Krugljak, N. Ja.: Real interpolation functors. Book manuscript. Jaroslavl’ 1981 [Russian].Google Scholar
  5. 5.
    Bukhvalov, A. W.: Theorems on interpolation of sublinear operators in spaces with mixed norms. In: Qualitative and approximate methods for the investigation of operator equations, Jaroslavl’ 1984 [Russian].Google Scholar
  6. 6.
    Cwikel, M.: K-divisibility of the K-functional and Calderón couples. Ark. Mat. 22, 39–62 (1984).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cwikel, M., Peetre, J.: Abstract K and J spaces. J. Math. Pures et Appl. 60, 1–50 (1981).zbMATHMathSciNetGoogle Scholar
  8. 8.
    Gustavsson, J.: A function parameter in connection with interpolation of Banach spaces. Math. Scand. 42, 289–305 (1978).zbMATHMathSciNetGoogle Scholar
  9. 9.
    Haaker, A.: On the conjugate space of a Lorentz space. Research Report, Lund 1970.Google Scholar
  10. 10.
    Janson, S.: Minimal and maximal methods of interpolation. J.Functional Analysis 44, 50–73 (1981).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Merucci, C.: Interpolation réelle avec parametre fonctionnel des espaces Lp,q, Université de Nantes, Sem. D’Anal. exposé 17, 350–373 (1980/81).Google Scholar
  12. 12.
    Nawrocki, M., Ortyński, A.: The Mackey topology and complemented subspaces of Lorentz sequence spaces d(w, p) for 0<p<1. Trans. Amer. Math. Soc. 287, 713–722 (1985).zbMATHMathSciNetGoogle Scholar
  13. 13.
    Peetre, J.: Remark on the dual of an interpolation space. Math. Scand. 34, 124–128 (1974).zbMATHMathSciNetGoogle Scholar
  14. 14.
    Rolewicz, S.: Metric linear spaces. PWN-Polish Scientific Publishers, Warszawa, D. Reidel Publishing Company, Dordrecht Boston Lancaster 1984.Google Scholar
  15. 15.
    Shapiro, J. H.: Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces. Duke Math. J. 43, 187–202 (1976).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Mieczysław Mastyło
    • 1
  1. 1.Institute of MathematicsA. Mickiewicz UniversityPoznańPoland

Personalised recommendations