Advertisement

On interpolation of multi-linear operators

  • Svante Janson
Contributed Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1302)

Keywords

Complex Method Lorentz Space Studia Math Interpolation Space Complex Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bergh and J. Löfström, Interpolation spaces. Grundlehren Math. Wiss. 223, Springer-Verlag, Berlin-Heidelberg-New York 1976.Google Scholar
  2. 2.
    A.P. Calderón, Intermediate spaces and interpolation, the complex method. Studia Math. 24 (1964), 113–190.zbMATHMathSciNetGoogle Scholar
  3. 3.
    R.A. Hunt, On L(p,q) spaces. Enseign. Math. 12 (1966), 249–276.zbMATHGoogle Scholar
  4. 4.
    S. Janson, P. Nilsson and J. Peetre, Notes on Wolff’s note on interpolation spaces. Proc. London Math. Soc. 48 (1984), 283–299.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    G.E. Karadzov, An interpolation method of "means" for quasinormed spaces. Dokl. Akad. Nauk SSSR 209:1 (1973), 33–36 (Russian). Translation in Soviet Math. Dokl. 14 (1973), 331–335.MathSciNetGoogle Scholar
  6. 6.
    J.L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation. Inst. Hautes Etudes Sci. Publ. Math. 19 (1964), 5–68.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    R. O’Neill, Convolution operators and L(p,q) spaces. Duke Math. J. 30 (1963), 129–142.CrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Zafran, A multilinear interpolation theorem. Studia Math. 62 (1978), 107–124.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Svante Janson
    • 1
  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations