Advertisement

The φ-transform and applications to distribution spaces

  • Michael Frazier
  • Björn Jawerth
Contributed Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1302)

1980 AMS Subject Classification

46E35 42B30 

Key Words and Phrases

atomic decomposition Hardy spaces Sobolev spaces Triebel-Lizorkin spaces trace interpolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. B. Alexandrov, A majorization property for the several variable Hardy-Stein-Weiss classes (in Russian), Vestnik Leningrad Univ. No. 13 (1982), 97–98.Google Scholar
  2. [2]
    A. Baernstein II and E. Sawyer, Embedding and multiplier theorems for H p(R n), Mem. Amer. Math. Soc. 318 (1985), 1–82.MathSciNetGoogle Scholar
  3. [3]
    J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976.CrossRefzbMATHGoogle Scholar
  4. [4]
    H.-Q. Bui, Weighted Besov and Triebel spaces: Interpolation by the real method, Hiroshima Math. J. 12 (1982), 581–605.zbMATHMathSciNetGoogle Scholar
  5. [5]
    R. R. Coifman, A real variable characterization of H p, Studia Math. 51 (1974), 269–274.zbMATHMathSciNetGoogle Scholar
  6. [6]
    H. Dym and H. P. McKean, Fourier Series and Integrals, Academic Press, Inc., New York, 1972.zbMATHGoogle Scholar
  7. [7]
    C. Fefferman, Harmonic analysis and H p spaces, in Studies in Harmonic Analysis, J. M. Ash, editor, M.A.A. Studies in Mathematics, Vol. 13 (1976), 38–75.Google Scholar
  8. [8]
    C. Fefferman, N. Rivière, and Y. Sagher, Interpolation between H p-spaces, the real method, Trans. Amer. Math. Soc. 191 (1974), 75–81.zbMATHMathSciNetGoogle Scholar
  9. [9]
    C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    C. Fefferman and E. M. Stein, H p spaces of several variables, Acta. Math. 129 (1972), 137–193.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777–799.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, to appear.Google Scholar
  13. [13]
    P. Goupillaud, A. Grossmann, and J. Morlet, Cycle-octave and related transforms in seismic signal analysis, Geoexploration 23 (1984/85), 85–102.CrossRefGoogle Scholar
  14. [14]
    A. Grossman and J. Morlet, Decomposition of functions into wavelets of constant shape, and related transforms, to appear in Mathematics and Physics, Lectures on Recent Results, L. Streit, ed., World Scientific Publishing Co., Singapore.Google Scholar
  15. [15]
    A. Grossman, J. Morlet, and T. Paul, Transforms associated to square integrable group representations I. General results, J. Math. Phys. 26 (1985), 2473–2479.CrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Grossman and T. Paul, Wave functions on subgroups of the group of affine canonical transformations, (preprint).Google Scholar
  17. [17]
    B. Jawerth, Some observations on Besov and Lizorkin-Triebel spaces, Math. Scand. 40 (1977), 94–104.zbMATHMathSciNetGoogle Scholar
  18. [18]
    B. Jawerth, The K-functional for H 1 and BMO, Proc. Amer. Math. Soc. 92 (1984), 67–71.zbMATHMathSciNetGoogle Scholar
  19. [19]
    B. Jawerth, R. Rochberg, and G. Weiss, Commutator and other second order estimates in real interpolation theory, to appear in Arkiv. för Mat.Google Scholar
  20. [20]
    J. R. Klauder and B. S. Skagerstam, Coherent States-Applications in Physics and Mathematical Physics, World Scientific, 1984.Google Scholar
  21. [21]
    R. Latter, A characterization of H p(R n) in terms of atoms, Studia Math. 62 (1978), 65–71.MathSciNetGoogle Scholar
  22. [22]
    P. G. Lemarié and Y. Meyer, La transformation en ondelettes dans R n, manuscript, 1985.Google Scholar
  23. [23]
    Y. Meyer, La transformation en ondelettes, manuscript, 1985.Google Scholar
  24. [24]
    T. Paul, Affine coherent states and the radial Schrödinger equation I. Radial harmonic oscillator and hydrogen atom, (preprint).Google Scholar
  25. [25]
    J. Peetre, On spaces of Triebel-Lizorkin type, Arkiv. för Mat. 13 (1975), 123–130.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Series, Duke Univ., Durham, 1976.zbMATHGoogle Scholar
  27. [27]
    J. Peetre and G. Sparr, Interpolation of normed Abelian groups, Ann. Mat. Pura. Appl. 104 (1975), 187–207.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.zbMATHGoogle Scholar
  29. [29]
    J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511–544.CrossRefMathSciNetGoogle Scholar
  30. [30]
    H. Triebel, Theory of Function Spaces, Monographs in Mathematics, Vol. 78, Birkhäuser Verlag, Basel, 1983.CrossRefGoogle Scholar
  31. [31]
    J. M. Wilson, On the atomic decomposition for Hardy spaces, Pacific J. Math. 116 (1985), 201–207.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Michael Frazier
    • 1
  • Björn Jawerth
    • 2
  1. 1.Department of MathematicsUniversity of New MexicoAlbuquerque
  2. 2.Department of MathematicsWashington UniversitySt. Louis

Personalised recommendations