Advertisement

Remarks on local function spaces

  • Bogdan Bojarski
Contributed Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1302)

Keywords

Sobolev Space Local Oscillation Finite Dimensional Space John Domain Local Approximation Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.A. ADAMS, Sobolev spaces, New York; San Francisco; London 1975, 268 p.Google Scholar
  2. [2]
    B. BOJARSKI, Remarks on Markov’s Inegualities and Some Properties of Polynomials, Bull. of the Pol.Acad.of Sci. vol.33, No 7–8, 1985.Google Scholar
  3. [3]
    B. BOJARSKI, Sharp maximal operator of fractional order and Sobolev imbedding inequalities, Bull.Pol.Ac.: Math., 33 (1985), 7–16zbMATHMathSciNetGoogle Scholar
  4. [4]
    B. BOJARSKI, Remarks on stability of inverse Hölder inequalities and quasiconformal mappings, Ann.Acad.Sci.Fenn., 10 (1985)Google Scholar
  5. [5]
    B. BOJARSKI, T. IWANIEC, Analytical foundations of the theory of quasiconformal mappings in Rn, ibid. 8 (1983) 257–324zbMATHMathSciNetGoogle Scholar
  6. [6]
    J. BOMAN, Lp-estimates for very strong elliptic systems-Preprint, to appear in J.Analyse Math.Google Scholar
  7. [7]
    Ju.A. BRUDNYJ, Prostranstva opredelaemyje s Pomoŝĉu lokalnyh priblizenii. Trudy Mosk.Mat. Obscestva, 1971, t.24Google Scholar
  8. [8]
    Ju.A. BRUDNYJ, M.I. GANSBURG, On an extremal problem for polynomials of n variables, Izviestia AN USSR, 37 (1973), 344–355.zbMATHGoogle Scholar
  9. [9]
    V.I. BURENKOV, Sobolev’s integral representation and Taylor’s formula, Proc.Steklov Inst. 131(1974), 33–38zbMATHMathSciNetGoogle Scholar
  10. [10]
    S. CAMPANATO, Proprieta di una famiglia di spazi funzionali, Ann. Scuola Norm.Pisa. 18 (1984), 137–160MathSciNetGoogle Scholar
  11. [11]
    R. COIFMAN, C. FEFFERMAN, Weighted norm inequalities for maximal functions and singular integrals. Studia Math., 51 (1974), 241–250zbMATHMathSciNetGoogle Scholar
  12. [12]
    M. GIAQUINTA, Multiple integrals in the calculus of variations and non-linear elliptic systems, Preprint No 443, SFB 72, Bonn 1981Google Scholar
  13. [13]
    M. GIAQUINTA, G. MODICA, Regularity results for some classes of higher order non-linear elliptic systems, J. für Reine u.Angew. Math. 311/312, 1979, pp. 145–169MathSciNetGoogle Scholar
  14. [14]
    F.W. GEHRING, The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 1973, 265–277.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    D. GILBARG, N.S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg N. Tokyo 1983CrossRefzbMATHGoogle Scholar
  16. [16]
    L.G. GUROV, The stability of Lorentz transformations, Estimates for the derivatives.-Dokl.Akad.Nauk SSSR 220. 1975, 273–276 (Russian).MathSciNetGoogle Scholar
  17. [17]
    L.G. GUROV, Yu.G. RESETNYAK, A certain analogue of the concept of a function with bounded mean oscillation. Sibirsk.Mat.Zh. 17, No 3. 1976, 540–546 (Russian)zbMATHGoogle Scholar
  18. [18]
    T. IWANIEC, Some aspects of partial differential equations and quasiregular mappings.-Proc. of the Int. Congress of Math. Warsaw, August 1983, PWN-North-Holland. Warsaw, 1984Google Scholar
  19. [19]
    T. IWANIEC, On Lp-integrability in PDE’s and quasiregular mappings for large exponents-Ann.Acad.Sci.Fenn. Ser A.I.Math 7, 1982, 301–322zbMATHMathSciNetGoogle Scholar
  20. [20]
    T. IWANIEC, C.A. NOLDER, Hardy-Littlewood inequality for quasiregular mappings in certain domains in Rn, Ann.Acad.S. Fenn, Ser.A.I.Math., Vol. 10, 1985, 267–282CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    F. JOHN, L. NIRENBERG, On functions of bounded mean oscillation, Comm Pure App. Math., 141 (1961)Google Scholar
  22. [22]
    O.A. LADYZHENSKAYA, N.N. URAL’TSEVA, Linear Quasilinear Elliptic Equations. Moscow, Izdat. "NAUKA" 1964 (Russian)Google Scholar
  23. [23]
    V.G. Mazja, Prostranstva S.L.Soboleva Izdat. Lening. Univ. Leningrad 1985CrossRefGoogle Scholar
  24. [24]
    B. MUCKENHOUPT, Weighted norm inequalities for the Hardy Maximal function, Trans. AMS, 65 (1972), 207–226.CrossRefMathSciNetGoogle Scholar
  25. [25]
    O. NIKODYM, Sur une classe de fonctions considérée dans le probleme de Dirichlet, Fundam.Mat. 1933, vol.21, p.129–150.Google Scholar
  26. [26]
    H.M. REIMANN, T. RYCHENER, Funktionen beschränkter mittlerer Oszillation, Lec. Notes, No 487, Springer, 1975Google Scholar
  27. [27]
    Ju.G. RESETNIAK, Stability theorems in geometry and analysis, Science, Novosibirsk, 1982.Google Scholar
  28. [28]
    Ju.G. RESETNIAK, Integralnyje predstavlenia differencirujemyh funkcii v oblstiah s negladkoi granicej, Sibir.Math.Zurnal, t.21. no 6. 1980 p.108–116.Google Scholar
  29. [29]
    Ju.G. RESETNYAK, Zamecania ob integralnyh predstavleniah differencujemyh funkcii mnogih peremennyh, Sibir.Mat.Zurnal, t.25, No 5, 1984Google Scholar
  30. [30]
    R. SHARPLEY, R. DEVORE Maximal function as measure of smoothness Memoirs of the AMS 293, Providence 1984Google Scholar
  31. [31]
    S.L. SOBOLEV, Some applications of functional analysis, Izdat. Leningrad Gos.Univ,. Leningrad 1950Google Scholar
  32. [32]
    E. STEIN, Singular integrals and differentiability properties of functions. Princeton Univ.Press (1970)Google Scholar
  33. [33]
    J.O. STÖMBERG, A. TORCHINSKY, Weights, sharp maximal functions and Hardy spaces, Bull. Amer.Math.Soc.(N.S.) 3, 1980, 1053–1056CrossRefMathSciNetGoogle Scholar
  34. [34]
    H. WHITNEY, Analytic extensions of differentiable functions defined in closed sets, Trans.Am.Math.Soc. 36 (1934), 63–89CrossRefMathSciNetGoogle Scholar
  35. [35]
    I.WIK, A comparison of the integrability of f and Mf with that of f⋆.-Preprint series 2, Dept.Math., Univ. of Umea, 1983Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Bogdan Bojarski
    • 1
  1. 1.University of WarsawWarszawaPoland

Personalised recommendations