Advertisement

New and old function spaces

  • Hans Wallin
Surveys
Part of the Lecture Notes in Mathematics book series (LNM, volume 1302)

Keywords

Hardy Space Maximal Function Besov Space Morrey Space Lipschitz Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O.V. Besov, V.P. Il’in, and S.M. Nikol’skii, Integral Representations of Functions and Imbedding Theorems (2 volumes), John Wiley and Sons, New York, 1978.Google Scholar
  2. [2]
    B. Bojarski, Sharp maximal operator of fractional order and Sobolev imbedding inequalities, Bull. Polish Acad. Sc., Math. 33, No. 1–2 (1985), 7–16.zbMATHMathSciNetGoogle Scholar
  3. [3]
    Ju.A. Brudnyi, Piecewise polynomial approximation, imbedding theorems and rational approximation, Lecture Notes in Math. 556, Springer-Verlag, Berlin, 1976, 73–98.Google Scholar
  4. [4]
    Ju.A. Brudnyi and P.A. Shvartsman, A linear extension operator for a space of smooth functions defined on a closed subset of Rn, Dokl. Akad, Nauk 280. No. 2 (1985); English transl. in Soviet Math. Dokl. 31 (1985), 48–51. (See also Lecture Notes in Math. 1043, Springer-Verlag, Berlin, 1984, 583–585.)Google Scholar
  5. [5]
    A.P. Calderon and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961) 171–225.zbMATHMathSciNetGoogle Scholar
  6. [6]
    S. Campanato, Proprietà di una famiglia di spazi funzionali, Ann. Sc. Norm. Sup. Pisa 18 (1964), 137–160.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact C manifolds, Part I and II, Studia Math. 76 (1983), 1–58 and 95–136.zbMATHMathSciNetGoogle Scholar
  8. [8]
    R.A. DeVore and V. Popov, Interpolation of Besov spaces (under preparation).Google Scholar
  9. [9]
    R.A. DeVore and R.C. Sharpley, Maximal Functions Measuring Smoothness, Amer. Math. Soc., Providence, R.I., 1984.Google Scholar
  10. [10]
    J.R. Dorronsoro, Mean oscillation and Besov spaces, Canad. Math. Bull. 28 (1985), 474–480.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    E.M. Dynkin, A constructive characterization of the classes of S.L. Sobolev and O.V. Besov, Proc. Steklov Inst. of Math., 1, 1983, Amer. Math. Soc., Providence, RI, 39–74.Google Scholar
  12. [12]
    S. Janson, M. Taibleson, and G. Weiss, Elementary Characterization of the Morrey-Camapanto spaces, Lecture Notes in Math. 992, Springer-Verlag, Berlin, 1983, 101–114.Google Scholar
  13. [13]
    A. Jonsson, Besov spaces on manifolds in Rn, Dept. of Math., Univ. of Umeå, No. 3 (1985).Google Scholar
  14. [14]
    A. Jonsson, Markov’s inequality and local polynomial approximation, These proceedings.Google Scholar
  15. [15]
    A. Jonsson, P. Sjögren, and H. Wallin, Hardy and Lipschitz spaces on subsets of Rn, Studia Math. 80 (1984), 141–166.zbMATHMathSciNetGoogle Scholar
  16. [16]
    A. Jonsson and H. Wallin, A Whitney extension theorem in Lp and Besov spaces, Ann. Inst. Fourier 28 (1978), 139–192.CrossRefMathSciNetGoogle Scholar
  17. [17]
    A. Jonsson and H. Wallin, The trace to closed sets of functions in Rn with second difference of order O(h), J. Approx. Theory 26 (1979), 159–184.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    A. Jonsson and H. Wallin, Local polynomial approximation and Lipschitz type conditions on general closed sets, Dept. of Math., Univ. of Umeå, No. 1 (1980); partly published as Local pol. approx. and Lipschitz functions on closed sets, Proc. Conf. Constructive Function Theory, Varna 1981, Sofia 1984, 368–375.Google Scholar
  19. [19]
    A. Jonsson and H. Wallin, Function spaces in subsets of Rn, Mathematical Reports 2, Part 1, Harwood Academic Publ., New York, 1984.Google Scholar
  20. [20]
    S.G. Krantz, Geometric Lipschitz spaces and applications to complex function theory and nilpotent groups, J. Funct. Anal. 34 (1979), 456–471.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    S.G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Expo. Math. 3 (1983), 193–260.MathSciNetGoogle Scholar
  22. [22]
    A. Kufner, O. John, and S. Fučik, Function spaces, Noordhoff Inter. Publ., Leyden, 1977.zbMATHGoogle Scholar
  23. [23]
    A. Nagel and E.M. Stein, Lectures on Pseudo-Differential Operators, Princeton University Press, Princeton, 1979.zbMATHGoogle Scholar
  24. [24]
    H.M. Reimann and T. Rychener, Funktionen beschränkter mittlerer Oszillation, Lecture Notes in Math. 487, Springer-Verlag, Berlin, 1975.zbMATHGoogle Scholar
  25. [25]
    F. Ricci and M. Taibleson, Boundary values of harmonic functions in mixed norm spaces and their atomic structure, Ann. Sc. Norm. Sup. Pisa, (4), 10 (1983), 1–54.zbMATHMathSciNetGoogle Scholar
  26. [26]
    H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.CrossRefGoogle Scholar
  27. [27]
    A.L. Volberg and S.V. Konyagin, There is a homogeneous measure on any compact subset in Rn, Dokl. Akad. Nauk 278, No. 4 (1984); English transl. in Soviet Math. Dokl. 30 (1984), 453–456.Google Scholar
  28. [28]
    H. Wallin, Markov’s inequality on subsets of Rn, Canad. Math. Soc., Conf. Proc. 3, Amer. Math. Soc., Providence, R.I. (1983), 377–388.Google Scholar
  29. [29]
    P. Wingren, Lipschitz spaces and interpolating polynomials on subsets of Euclidean space, These proceedings.Google Scholar
  30. [30]
    L. Ödlund, A Whitney type extension operator on Besov spaces, Dept. of Math., Univ. of Umeå, No. 9 (1986).Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Hans Wallin
    • 1
  1. 1.Department of MathematicsUniversity of UmeåUmeåSweden

Personalised recommendations