Marcel Riesz in Lund

  • Jaak Peetre
Historical Lecture
Part of the Lecture Notes in Mathematics book series (LNM, volume 1302)


Acta Math Moment Problem Monogenic Function Summation Method Riesz Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BDS.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Research notes in mathematics 76. Boston: Pitman 1982.zbMATHGoogle Scholar
  2. BP.
    Bondesson, L., Peetre, J.: The classes Va are monotone. These proceedings.Google Scholar
  3. C.
    Cartwright, M.L.: Manuscripts of Hardy, Littlewood, Marcel Riesz and Titchmarsh. Bull. London Math. Soc. 14, 472–532 (1982).CrossRefzbMATHMathSciNetGoogle Scholar
  4. E1.
    Essén, M.: A superharmonic proof of M. Riesz conjugate function theorem. Ark. Mat. 22, 241–249 (1984).CrossRefzbMATHMathSciNetGoogle Scholar
  5. E2.
    Essén, M.: A generalization of the M. Riesz theorem on conjugate functions and the Zygmund LlogL-theorem to Rd, d≥2. Technical report. Uppsala: 1986.Google Scholar
  6. F.
    Frostman, O.: Potentil d’équilibre et capcité des ensembles avec quelques applications a la théorie des functions. Commun. Sém. Math. Univ. Lund 3, 1–118 (1935).Google Scholar
  7. FS.
    Fefferman, C., Stein, E.: Hp spaces of several variables. Acta Math. 129, 137–193 (1972).CrossRefzbMATHMathSciNetGoogle Scholar
  8. G1.
    Gârding, L.: Marcel Riesz in memoriam. Åcta Math. 124, I–XI (1970).CrossRefzbMATHGoogle Scholar
  9. G2.
    Gârding, L.: Marcel Riesz. In: Kungl. Fysiogr. Sällsk. Arsbok 1970, pp. 65–70. Lund: 1970.Google Scholar
  10. G3.
    Gârding, L.: Sharp fronts and lacunas. In: Actes, Congr. International des Mathématiciens, 1/10 septembre 1970, Nice, France, t. 2, pp. 723–729. Paris: Gauthier-Villars 1971.Google Scholar
  11. G4.
    Gârding, L.: The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. Math. 48, 785–826 (1947).CrossRefzbMATHGoogle Scholar
  12. GS.
    Gel’fand, I.M., Shilov, G.E.: Generalized functions I. Moscow: Goz. Izd. Fiz.-Mat. Lit. 1958 [Russian].Google Scholar
  13. H1.
    Horvath, J.: L’oeuvre mathématique de Marcel Riesz I, II. Cah. Semin. Math. Hist. 3, 83–121 (1982), 4, 1–59 (1983).Google Scholar
  14. H2.
    Horvath, J.: Sur les fonctions conjugées a plusieurs variables. Indag. Math. 16, 17–29 (1953).Google Scholar
  15. HR.
    Hardy, G.H., Riesz, M.: The general theory of Dirichlet series. Cambridge Tracts in Mathematics 18. Cambridge: Cambridge University Press 1915.Google Scholar
  16. JP.
    Janson, S., Peetre, J.: Harmonic Interpolation. In: Lecture Notes in Mathematics 1070, pp. 92–124. Springer: Berlin etc. 1984.Google Scholar
  17. L.
    Littlewood, J.: Some problems in real and complex analysis. Lexington: Heath 1968.zbMATHGoogle Scholar
  18. McI.
    McIntosh, A.: Clifford algebras and some applications in analysis. Notes by J. Picton-Warlow.Google Scholar
  19. P1.
    Peetre, J.: biography of Marcel Riesz. In: Biographic Encyclopedia of Scientists and Technologists. Milano: Mondadori 1974.Google Scholar
  20. P2.
    Peetre, J.: Van der Waerden’s conjecture and hyperbolicity. (Technical report). Lund: 1981.Google Scholar
  21. P3.
    Peetre, J.: Two new interpolation methods based on the duality map. Acta Math. 143, 73–91 (1979).CrossRefzbMATHMathSciNetGoogle Scholar
  22. R1.
    Riesz, M.: L’intégrale de Riemann-Liouville et le probleme de Cauchy. Acta Math. 81, 1–223 (1949).CrossRefzbMATHMathSciNetGoogle Scholar
  23. R2.
    Riesz, M.: Sur les fonctions conjuguées. Math. Z. 27, 218–244 (1927).CrossRefzbMATHMathSciNetGoogle Scholar
  24. R3.
    Riesz, M.: Sur les maxima des formes bilinéaires et sur les fonctionelles linéaires. Acta Math. 49, 465–497 (1927).CrossRefzbMATHMathSciNetGoogle Scholar
  25. R4.
    Riesz, M.: Clifford numbers and spinors. Lecture notes. College Park: Institute for Fluid Dynamics and Applied Mathematics of the University of Maryland 1957.Google Scholar
  26. SW.
    Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables, I. The theory of Hp-spaces. Acta Math. 103, 25–62 (1960).CrossRefzbMATHMathSciNetGoogle Scholar
  27. Th1.
    Thorin, O.: An extension of a convexity theorem of M. Riesz Kungl. Fysiogr. Sällsk. i Lund Förh. 8, 166–170 (1938).Google Scholar
  28. Th2.
    Thorin, O.: Convexity theorems generalizing those of M. Riesz and Hadamard with some applications. Comm. Sém. Math. Univ. Lund. 9, 1–58 (1948).MathSciNetGoogle Scholar
  29. Th3.
    Thorin, O.: personal communication (Dec. 1979).Google Scholar
  30. Ti.
    Tits, J., review of [R4]. Math. Rev. 31, 1113–1114 (1966).Google Scholar
  31. We.
    Weil, A.: History of mathematics: why and how. In: Proc. Internat. Congr. of Mathematicians, Helsinki, Aug. 15–23, 1978, pp. 227–236. Helsinki: 1980.Google Scholar
  32. Wi.
    Wimp, J.: Sequence transformations and their applications. New York: Academic Press 1981.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Jaak Peetre

There are no affiliations available

Personalised recommendations