The bo-adams spectral sequence: Some calculations and a proof of its vanishing line

  • Donald M. Davis
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1286)


Exact Sequence Spectral Sequence Short Exact Sequence Homotopy Class Homotopy Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Adams, "On the structure and applications of the Steenrod algebra", Comm. Math. Helv. 32 (1958) 180–214.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    D. W. Anderson, E. H. Brown, and F. P. Peterson, "The structure of the spin cobordism ring", Annals of Math. 86 (1967), 271–298.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D. W. Anderson and D. M. Davis, "A vanishing theorem in homological algebra", Comm. Math. Helv. 48 (1973) 318–327.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    G. Carlsson, "On the stable splitting of bo bo and torsion operations in connective K-theory", Pac. Jour. Math. 87 (1980) 283–297.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    D. M. Davis, "The cohomology of the spectrum bJ", Bol. Soc. Mat. Mex. 20 (1975) 6–11.MathSciNetzbMATHGoogle Scholar
  6. 6.
    D. M. Davis, S. Gitler, and M. Mahowald, "The stable geometric dimension of vector bundles over real projective spaces", Trans. Amer. Math. Soc. 268 (1981) 39–61.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    D. M. Davis and M. Mahowald, "v1-and v2-periodicity in stable homotopy theory", Amer. Jour. Math. 103 (1981) 615–659.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    W. Lellman and M. Mahowald, "The bo-Adams spectral sequence", to appear in Trans. Amer. Math. Soc.Google Scholar
  9. 9.
    W. H. Lin. "An Adams-type spectral sequence for Hopf subalgebras of the Steenrod algebra", thesis, Northwestern Univ., 1974.Google Scholar
  10. 10.
    M. Mahowald, "bo-resolutions", Pac. Jour. Math. 92 (1981) 365–383.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    ___, "An addendum to bo-resolutions", Pac. Jour. Math. 11 (1984) 117–123.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    ___, "The image of J in the EHP sequence", Annals of Math. 116 (1982) 65–117.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    R. J. Milgram, "The Steenrod algebra and its dual for connective K-theory", Reunion sobre homotopia, Soc. Mat. Mex. (1975) 127–158.Google Scholar
  14. 14.
    H. R. Miller, "On relations between Adams spectral sequences with an application to the stable homotopy of the Moore space", J. Pure Appl. Algebra 20 (1981) 287–312.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J. Moore and F. P. Peterson, "Nearly Frobenius algebras, Poincare algebras, and their modules", J. Pure Appl. Algebra 3 (1973) 83–93.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    C. T. C. Wall, "A characterization of simple modules over the Steenrod algebra mod 2", Topology 1 (1962) 249–254.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Donald M. Davis
    • 1
  1. 1.Lehigh UniversityBethlehem

Personalised recommendations