Stable splittings of mapping spaces

  • C.-F. Bödigheimer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1286)


Configuration Space Tubular Neighbourhood Homotopy Theory Homotopy Equivalent Ration Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Barratt and P. Eccles: Γ+-structures-III: the stable structure of ΩSA. Topology 13 (1974), 199–207.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    F. Cohen and L. Taylor: Computations of Gelfand-Fuks cohomology, the cohomology of function spaces and the cohomology of configuration spaces. Geometric Applications of Homotopy Theory I (Evanston 1977), Springer LNM 657, 106–143.Google Scholar
  3. [3]
    F. Cohen, P. May and L. Taylor: Splitting of certain spaces CX. Math. Proc. Cambridge Phil. Soc. 84 (1978), 465–496.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    F. Cohen, P. May and L. Taylor: Splitting of some more spaces. Math. Proc. Cambridge Phil. Soc. 86 (1979), 227–236.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    F. Cohen: The unstable decomposition of ω2S2X and its applications. Math. Z. 182 (1983), 553–568.MathSciNetCrossRefGoogle Scholar
  6. [6]
    R. Cohen: Stable proofs of stable splittings. Math. Proc. Cambridge Phil. Soc. 88 (1980), 149–151.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Dold und R. Thom: Quasifaserungen und unendliche symmetrische Produkte. Ann. of Math. 67 (1958), 239–281.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    E. Fadell and L. Neuwirth: Configuration spaces. Math. Scand. 10 (1962), 119–126.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    I. James: Reduced product spaces. Annals of Math. 62 (1955), 170–197.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D. Kahn and S. Priddy: Applications of the transfer to stable homotopy theory. Bull. Math. Soc. 78 (1972), 981–987.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D. Kahn: On the stable decomposition of ΩSA. Geometric Applications of Homotopy Theory II (Evanston 1977), Springer LNM 658, 206–214.Google Scholar
  12. [12]
    D. Kahn and S. Priddy: The transfer and stable homotopy theory. Math. Proc. Cambridge Phil. Soc. 83 (1978), 103–112.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    P. May: The Geometry of Iterated Loop Spaces. Springer LNM 271 (1972).Google Scholar
  14. [14]
    P. May and L. Taylor: Generalized splitting theorem. Math. Proc. Cambridge Phil. Soc. 93 (1983), 73–86.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    D. Mc Duff: Configuration spaces. K-Theory and Operator Algebras (Athens, Georgia, 1975), Springer LNM 575, 88–95.Google Scholar
  16. [16]
    D. Mc Duff: Configuration spaces of positive and negative particles. Topology 14 (1975), 91–107.MathSciNetCrossRefGoogle Scholar
  17. [17]
    J. Milnor: On the construction FK. Lecture Notes Princeton University 1956, repr. in J. F. Adams: Algebraic Topology — a Student's Guide. London Math. Soc. Lect. Notes Ser. 4 (1972), 119–136.Google Scholar
  18. [18]
    J. Moore: On a theorem of Borsuk. Fund. Math. 43 (1956), 195–201.MathSciNetzbMATHGoogle Scholar
  19. [19]
    G. Segal: Configuration spaces and iterated loop-spaces. Invent. Math. 21 (1973), 213–221.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    V. Snaith: A stable decomposition of ωnSnX. J. London Math. Soc. 7 (1974), 577–583.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    P. Vogel: Cobordisme d'immersions. Ann. Scient. Ec. Norm. Sup. 7 317–358.Google Scholar
  22. [22]
    R. Vogt: Splittings of spaces CX. Manuscr. Math. 38 (1982), 21–39.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • C.-F. Bödigheimer
    • 1
  1. 1.Sonderforschungsbereich 170 "Geometrie und Analysis"GöttingenBRD

Personalised recommendations