Advertisement

Homotopy and homology of diagrams of spaces

  • Emmanuel Dror Farjoun
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1286)

Keywords

Spectral Sequence Homotopy Type Inverse Limit Homotopy Theory Admissible Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. [A]
    M. Andre, Methode Simpliciale en Algebra homologique et Algebra Commutative. Lecture Notes in Math. 32 (1967) Springer-Verlag.Google Scholar
  2. 2. [B-K]
    A. Bousfield, D.Kan, “Homotopy limits, completions and localizations. Lecture notes in Math. No. 304 (1972), Springer-Verlag.Google Scholar
  3. 3. [Br]
    G. Bredon, “Equivariant cohomology theories”. Lecture Notes in Math. No. 34 (1967), Springer-Verlag.Google Scholar
  4. 4. [Bro]
    T. Brocker, Singulare Definition der Aquivarianten Bredon homology”. Manuscripta Math. 5 (1971), p. 91–102. Springer-Verlag.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5. [D-Z]
    E. Dror Farjoun, A. Zabrodsky, “Homotopy equivalences between diagrams of spaces:. J. of pure and applied algebra, 41 (1986), pp. 169–182.CrossRefzbMATHGoogle Scholar
  6. 6. [D-Z-2]
    —: The equivariant homotopy spectral sequence. Proceeding Barcelona Conference. Springer Verlag (to appear).Google Scholar
  7. 7. [DF]
    E. Dror Farjoun: “Homotopy theories for diagrams of spaces”. Proceeding A.M.S. (to appear).Google Scholar
  8. 8. [D-K-1]
    W.G. Dwyer and D.M. Kan, “Function complexes in homotopical algebra”. Topology 19 (1980) pp. 427–440.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9. [D-K-2]
    —: “An obstruction theory for diagrams of simplicial sets”. Proc. Kon. Akad. van Wetensch. A87=Ind. Math. 46 (1984), pp. 139–146.MathSciNetzbMATHGoogle Scholar
  10. 10. [D-K-3]
    —: “Singular functors and realization functors”. Proc. Kon. Akad. van Wetensch. A87=Ind. Math. 46 (1984).Google Scholar
  11. 11. [D-K-4]
    —: Equivariant homotopy classification, J.of Pure and Appl. Alg. 35 (1985), pp. 269–285.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12. [D-K-5]
    —: Function complexes for diagrams of simplicial sets. Proc. Kan. Akad. van Wetensch. A86-Ind. Math. 45 (1983).Google Scholar
  13. 13. [El]
    A.D. Elmendorf, “Systems of fixed point sets”, Trans. A.M.S. 277, (1983), pp. 275–284.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14. [H]
    U. Hommel, “Singulare algebraische topologie for D-raume” Thesis, Univ. of Heidelberg, 1985.Google Scholar
  15. 15. [Ill]
    S. Illman, “Equivariant singular homology and cohomology I”, Memoris A.M.S.No. 156, (1975).Google Scholar
  16. 16. [Mac]
    MacLane, “Categories for the working Mathematician”. Grad. Text in Math. #5 (1971) Springer-Verlag.Google Scholar
  17. 17. [May]
    J.P. May, “Equivariant homotopy and cohomology theory”, Contemporary Mathematics 12 (1981), pp. 209–217, A.M.S.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18. [M]
    H. Miller, “The Sullivan fixed point conjecture on maps from classifying spaces,” Ann. of Math. 120 (1984), pp. 39–87.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19. [SE]
    G. Segal, “Equivariant stable homotopy theory.” Actes Congress Intern. Math. 1970 Tom 2 pp. 59–63.Google Scholar
  20. 20. [Qu]
    D. G. Quillen, “Homotopical algebra”. Lecture Notes in Math. 43 (1967), Springer Verlag.Google Scholar
  21. 21. [W]
    C. Watts, “A homology theory for small categories”. Proceedings of Conference on Categorical algebra, La Jolla, (1965), Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Emmanuel Dror Farjoun

There are no affiliations available

Personalised recommendations