Advertisement

A course in some aspects of classical homotopy theory

  • F. R. Cohen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1286)

Keywords

Hopf Algebra Homotopy Group Loop Space Homotopy Equivalent Serre Spectral Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    [A1] J.F. Adams, On the nonexistence of elements of Hopf invariant one, Ann. of Math., 72(1960), 20–104.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    [A2] J.F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32(1958), 180–214.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [AK]
    S. Araki and T. Kudo, Topology of Hn-spaces and H-squaring operations, Mem. Fac. Sci. Kyūsyū Univ. Ser. A., 1956, 85–120.Google Scholar
  4. [B]
    M.G. Barratt, Spaces of finite characteristic, Quart. J. Math., 11(1960), 124–136.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [BJM]
    M.G. Barratt, J.D.S. Jones, and M.E. Mahowald, The Kervaire invariant problem, Contemp. Math., 19(1983), 9–22.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BS]
    R. Bott and H. Samelson, On the Pontrjagin product in spaces of paths, Comment. Math. Helv., 27(1953), 320–337.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [BP]
    E. H. Brown and F.P. Peterson, Whitehead products and cohomology operations, Quart. J. Math., 15(1964), 116–120.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Br]
    W. Browder, Homology operations and loop spaces, Ill. J. Math., 4(1960), 347–357.MathSciNetzbMATHGoogle Scholar
  9. [CPS]
    H.E.A. Campbell, F.P. Peterson, and P.S. Selick, Self-maps of loop spaces I, to appear.Google Scholar
  10. [CCPS]
    H.E.A. Campbell, F.R. Cohen, F.P. Peterson, and P.S. Selick, The space of maps of Moore spaces to spheres, to appear.Google Scholar
  11. [11]
    [C1] F.R. Cohen, Two-primary analogues of Selick's theorem and the Kahn-Priddy theorem for the 3-sphere, Topology, 23(1984), 401–421.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    [C2] F.R. Cohen, The unstable decomposition of θ2Σ2X and its applications, Math. Zeit., 182(1983), 553–568.CrossRefGoogle Scholar
  13. [CLM]
    F.R. Cohen, T.J. Lada, and J.P. May, The homology of iterated loop spaces, L.N.M. v.533, Springer-Verlag, Berlin and New York, 1976.zbMATHGoogle Scholar
  14. [CM]
    F.R. Cohen and M.E. Mahowald, Unstable properties of θnSn+k, Contemp. Math., 12(1982), 81–90.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    [CMN1] F.R. Cohen, J.C. Moore, and J.A. Neisendorfer, Torsion in homotopy groups, Ann. of Math., 109(1979), 121–168.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    [CMN2] F.R. Cohen, J.C. Moore, and J.A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math, 110 (1979), 549–565.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [CMN3]
    F.R. Cohen, J.C. Moore, and J.A. Neisendorfer, Exponents in homotopy theory, to appear.Google Scholar
  18. [CP]
    F.R. Cohen and F.P. Peterson, Suspensions of Stiefel manifolds, Quart. J. Math. Oxford, 35(1984), 115–119.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [CS]
    F.R. Cohen and P.S. Selick, Splitting of two function spaces, to appear.Google Scholar
  20. [D]
    L.E.J. Dickson, On quaternions and their generalizations and the history of the eight square theorem, Ann. of Math., 20(1919), 155–71.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [DL]
    E. Dyer and R. Lashof, Homology of iterated loop spaces, Amer. J. Math., 1962, 35–88.Google Scholar
  22. [G]
    T. Ganea, A generalization of the homology and homotopy suspension, Commentarii Math. Helvetici, 39(1965), 295–322.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    [G1] B. Gray, A note on the Hilton-Milnor theorem, Topology, 10(1971), 199–201.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    B. Gray, On the double suspension, to appear.Google Scholar
  25. [G2]
    [H1] P.J. Hilton, On the homotopy groups of a union of spheres, J. Lond. Math. Soc., 30(1955), 154–172.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    [H2] P.J. Hilton, Note on the Jacobi identity for Whitehead products, Proc. Camb. Phil. Soc., 57(1961), 180–182.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    [J1] I.M. James, Reduced product spaces, Ann. of Math., 62(1955), 170–197.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    [J2] I.M. James, The suspension triad of a sphere, Ann. of Math., 63(1956), 407–429.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    [J3] I.M. James, On the suspension triad, Ann. of Math., 63(1956), 191–247.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    [J4] I.M. James, On the suspension sequence, Ann. of Math., 65(1957), 74–107.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    [J5] I.M. James, The Topology of Stiefel Manifolds, London Math. Soc. Lecture Note Series, no.24, Cambridge Univ. Press, Cambridge, 1976.zbMATHGoogle Scholar
  32. [KP]
    D.S. Kahn and S.B. Priddy, The transfer and stable homotopy theory, Math. Proc. Camb. Phil. Soc., 83(1978), 103–111.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [M]
    M.E. Mahowald, Some remarks on the Kervaire invariant from the homotopy point of view, Proc. of Symposia in Pure Maht., XXII, Providence R.I., 1971, 165–169.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [MU]
    W.S. Massey and H. Uehara, The Jacobi identity for Whitehead products, Algebraic Geometry and Topology, A Symposium in honor of S. Lefschetz, (361–377), Princeton Mathematical series, no.12, Princeton Univ. Press, Princeton, N.J., 1957.Google Scholar
  35. [Ma]
    J.P. May, The Geometry of Iterated Loop Spaces, L.N.M. v.268, Springer-Verlag, Berlin and New York, 1972.CrossRefzbMATHGoogle Scholar
  36. [Mi]
    R.J. Milgram, Iterated loop spaces, Ann. of Math., 84(1966), 386–403.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [Mr]
    J.W. Milnor, The construction FK, Algebraic Topology, A Student's Guide by J.F. Adams, 119–135. London Math. Soc. Lecture Notes, no.4, Cambridge Univ. Press, Cambridge, 1972.Google Scholar
  38. [MM]
    J.W. Milnor and J.C. Moore, On the structure of Hopf algebras, Ann. of Math., 81(1965), 211–264.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [N1]
    J.A. Neisendorfer, Primary Homotopy Theory, Memoirs of the A.M.S., 25(1980).Google Scholar
  40. [N2]
    J.A. Neisendorfer, The exponent of a Moore space, to appear.Google Scholar
  41. [41]
    [N3] J.A. Neisendorfer, 3-primary exponents, Proc. Camb. Phil. Soc., 90(1981), 63–83.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [NT]
    M. Nakaoka and H. Toda, On the Jacobi identity for Whitehead products, J. Inst. Polytech. Osaka City Univ., Ser. A (1954), 1–13.Google Scholar
  43. [Ni]
    G. Nishida, Cohomology operations in iterated loop spaces, Proc. Japan Acad., 44(1968), 104–109.MathSciNetCrossRefzbMATHGoogle Scholar
  44. [P]
    G.J. Porter, The homotopy groups of wedges of suspensions, Amer. J. Math., 88(1966), 655–663.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [Sa]
    H. Samelson, A connection between the Whitehead product and the Pontrjagin product, Amer. J. Math., 28(1954), 278–287.MathSciNetGoogle Scholar
  46. [S]
    R. Schafer, On the algebras formed by the Cayley-Dickson process, Amer. J. Math., 76(1954), 435–446.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    [S1] P.S. Selick, Odd primary torsion in πkS3, Topology, 17(1978), 407–412.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    [S2] P.S. Selick, A decomposition of π*(S2p+1; ℤ/p), Topology, 20(1981), 175–177.MathSciNetCrossRefGoogle Scholar
  49. [49]
    [S3] P.S. Selick, A spectral sequence concerning the double suspension, Invent. Math., 64(1981), 15–24.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    [S4] P.S. Selick, A reformulation of the Arf invariant one mod p problem and applications to atomic spaces, Pac. J. Math., 108(1983), 431–450.MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    [S5] P.S. Selick, 2-primary exponents for the homotopy groups of spheres, Topology, 23(1984), 97–99.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [Sn]
    V.P. Snaith, A stable decomposition for θnΣnX, J. London Math. Soc., 7(1974), 577–583.MathSciNetCrossRefzbMATHGoogle Scholar
  53. [St]
    N.E. Steenrod, A convenient category of topological spaces, Mich. Math. J., 14(1967), 133–152.MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    [T1] H. Toda, Composition Methods in the Homotopy Groups of Spheres, Ann. of Math. Studies, v.49, Princeton Univ. Press, Princeton, N.J., 1962.zbMATHGoogle Scholar
  55. [55]
    [T2] H. Toda, On the double suspension E2, J. Inst. Polytech. Osaka City Univ., Ser.A, 7(1956), 103–145.MathSciNetGoogle Scholar
  56. [56]
    [T3] H. Toda, Non-existence of mappings of S31 into S16 with Hopf invariant one, J. Inst. Polytech Osaka City Univ., Ser.A, 8(1957), 31–34.MathSciNetGoogle Scholar
  57. [57]
    [T4] H. Toda, Complex of standard paths and n-ad homotopy groups, J. Inst. Polytech Osaka City Univ., Ser.A, 6(1955), 101–120.MathSciNetzbMATHGoogle Scholar
  58. [Wa]
    D. Waggoner, Thesis, Univ. of Kentucky, 1985.Google Scholar
  59. [59]
    [W1] G.W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics, Springer-Verlag, Berlin and New York, 1978.CrossRefGoogle Scholar
  60. [60]
    [W2] G.W. Whitehead, On mappings into group-like spaces, Comment. Math. Helv., 28(1954), 320–328.MathSciNetCrossRefGoogle Scholar
  61. [Wh]
    J.H.C. Whitehead, On adding relations to homotopy groups, Ann. of Math., 42(1941), 409–428.MathSciNetCrossRefzbMATHGoogle Scholar
  62. [Wt]
    H. Whitney, The self-intersections of a smooth n-manifold in 2n space, Ann. of Math., 45(1944), 220–246.MathSciNetCrossRefzbMATHGoogle Scholar
  63. [Z]
    H. Zassenhaus, The Theory of Groups, Chelsea, 1958.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • F. R. Cohen
    • 1
  1. 1.Department of MathematicsUniversity of KentuckyLexington

Personalised recommendations