Skip to main content

Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras

  • Chapter
  • First Online:
K-Theory, Arithmetic and Geometry

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1289))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Beilinson A.A. Higher regulators and values of L-functions. In: Modern problems of mathematics, Vol. 24, VINITI, Moscow.

    Google Scholar 

  2. Burghelea D., Fiedorowicz Z. Cyclic homology of group rings.-Preprint, 1984.

    Google Scholar 

  3. Cartan A., Eilenberg S. Homological algebra, Princeton Univ. Press, Princeton, 1956.

    MATH  Google Scholar 

  4. Connes A. Non commutative differential geometry.-Prepr. IHES, Oct. 1982, mars 1983; Publ. Math. IHES, Vol. 62, 1985.

    Google Scholar 

  5. Connes A. Cohomologie cyclique et foncteurs Extn.-C.R.A.S. Paris.

    Google Scholar 

  6. Drinfeld V.G. On quadratic commutation relations in quasi-classical case. In: Mathematical Physics, Funct. Anal., Naukova Dumka, Kiev, 1986, 25–34 (Russian).

    Google Scholar 

  7. Daletsky Yu.L., Tsygan B.L. Hamiltonian operators and Hochschild homology. Funct. Anal. Appl., Vol. 19, No. 4, 1985, 82–83 (Russian).

    MathSciNet  Google Scholar 

  8. Feigin B.L., Tsygan, B.L. Homology of Lie algebras of generalized Jacobi matrices. Funct. Anal. Appl., Vol. 17, No. 2, 1983, 86–87 (Russian).

    Article  MathSciNet  MATH  Google Scholar 

  9. Feigin B.L., Tsygan B.L. Additive K-theory and crystalline cohomology.-Funct. Anal. Appl., Vol. 19, No. 2, 1985, 52–62 (Russian).

    Article  MathSciNet  MATH  Google Scholar 

  10. Feigin B.L., Tsygan B.L. Additive K-theory. This volume.

    Google Scholar 

  11. Karoubi M. Homologie cyclique et K-théorie I, II.-Preprint Paris VII, 1985.

    Google Scholar 

  12. Loday J.L., Quillen D. Cyclic homology and the Lie algebras of matrices.-Comm. Math. Helv. 59, No. 4, 1984, 559–594.

    MathSciNet  MATH  Google Scholar 

  13. May P. Simplicial objects in algebraic topology.-Van Nostrand, Princeton, 1967.

    MATH  Google Scholar 

  14. Priddy S. Koszul resolutions.-Trans. Amer. Math. Soc.

    Google Scholar 

  15. Quillen D. On the cyclic homology of algebras.-Prepr. Oxford, 1984.

    Google Scholar 

  16. Quillen D. Homotopical algebra.-Springer Lect. Notes, Vol. 43, 1967.

    Google Scholar 

  17. Tsygan B.L. Homology of Lie algebras over rings and Hochschild homology. Russian Mathematical Surveys, Vol. 38, No. 2, 1983, p. 217–218 (Russian).

    Article  MathSciNet  MATH  Google Scholar 

  18. Waldhausen F. Algebraic K-theory of generalized free products, I, II.-Ann. Math., II.Ser., Vol. 108, 1978, No. 1, p.135–204; No. 2, p. 205–256.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Yuri I. Manin

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this chapter

Cite this chapter

Feigin, B.L., Tsygan, B.L. (1987). Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras. In: Manin, Y.I. (eds) K-Theory, Arithmetic and Geometry. Lecture Notes in Mathematics, vol 1289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0078369

Download citation

  • DOI: https://doi.org/10.1007/BFb0078369

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18571-0

  • Online ISBN: 978-3-540-48016-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics