Advertisement

A global factorization property for holomorphic functions of a domain spread over a surjective limit

  • Paul Berner
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 524)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. AURICH, The spectrum as envelope of holomorphy of a domain over an arbitrary product of complex lines, Proceedings on infinite dimensional holomorphy, Lecture Notes in Mathematics, Vol. 364, Springer-Verlag (1974).Google Scholar
  2. [2]
    P. BERNER, Holomorphy on surjective limits of locally convex spaces, Thesis, University of Rochester (1974).Google Scholar
  3. [3]
    P. BERNER, Sur la topologie de Nachbin de certains espace de fonctions holomorphes, C. R. Acad. Sc. Paris, t. 280, 1975, p. 431–433.MathSciNetzbMATHGoogle Scholar
  4. [4]
    P. BOLAND and L. WAELBROECK, On the nuclearity of H(U), Colloque D'analyse Fonctionell, Bordeaux, Mai, 1975.Google Scholar
  5. [5]
    S. DINEEN, Holomorphic functions on locally convex spaces: I. locally convex topologies on H(U), Ann. Inst. Fourier, Grenoble, t. 23, fasc 1. (1973), 19–54.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. DINEEN, Holomorphic functions on locally convex topological vector spaces: II. Pseudo-convex domains, Ann. Inst. Fourier, Grenoble, t. 23, fasc. 3 (1973), 155–185.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. DINEEN, Surjective limits of locally convex spaces and their application to infinite dimensional holomorphy, to appear in Bull. Soc. Math.Google Scholar
  8. [8]
    S. DINEEN and Ph. NOVERRAZ, Le problem de Levi dan certains espace vectoriels topologiques localement convex, to appear.Google Scholar
  9. [9]
    A. HIRSCHOWITZ, Remarques sur les overts d'holomorphie d'un produit denombrable de droites, Ann. Inst. Fourier, Grenoble, t. 19, fasc. 1 (1969), 219–229.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    E. LIGOCKA, A local factorization of analytic functions and its applications, Studia Mathematica, t. 74 (1973), 239.MathSciNetzbMATHGoogle Scholar
  11. [11]
    M. MATOS, Holomorphic mapping and domains of holomorphy, Thesis, University of Rochester, (1970).Google Scholar
  12. [12]
    L. NACHBIN, Uniformité d'holomorphie et type exponential, Séminaire Pierre Lelong 1970, Lecture notes in Mathematics, Vol. 205, Springer-Verlag (1971), 216–224.Google Scholar
  13. [13]
    Ph. NOVERRAZ, Pseudo-Convexité, convexité polynomiale et domains d'holomorphie en dimension infinie, Notas de Matematica 3 North-Holland, Amsterdam (1973).zbMATHGoogle Scholar
  14. [14]
    Ph. NOVERRAZ, Topologies associees a la topologies de Nachbin, Colloque D'analyse Fonctionelle, Bordeaux, Mai 1975.Google Scholar
  15. [15]
    M. SCHOTTENLOHER, Riemann domains: Basic results and open problems, Proceedings in infinite dimensional holomorphy, Lecture Notes in Mathematics, Vol. 364, Springer-Verlag (1974), 196–212.Google Scholar
  16. [16]
    M. SCHOTTENLOHER, Das Leviproblem in unendlichdimensionalen Raumen mit Schauderzerlegung, Habilitationsschrift, Munchen, (1974).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Paul Berner
    • 1
  1. 1.Department of MathematicsUniversity College DublinDublin 4Ireland

Personalised recommendations