Advertisement

The Brauer group of affine curves

  • F. R. DeMeyer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 549)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. N. Childs, “Mayer-Vietoris sequences and Brauer groups of non-normal domains,” Trans-Amer. Math. Soc. 196, 51–67, 1974.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    F. R. DeMeyer, “The Brauer group of a ring modulo an ideal”, rocky Mtn. J. of Math. (to appear).Google Scholar
  3. [3]
    F. R. DeMeyer and M. A. Knus, “The Brauer groups of a real curve”, P.A.M.S. (to appear).Google Scholar
  4. [4]
    A. Grothendieck, “Le groupe de Brauer I, II, III, in: Dix exposés sur la cohomologie des schèmas”, Paris, Masson et Amsterdam, North Holland, 1968, 46–188.Google Scholar
  5. [5]
    M. A. Knus, M. Ojanguren, “A Mayer-Vietoris sequence for the Brauer group”, J. of Pure and Applied Algebra, 5 (1974), 345–360.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Yu, Manin, “Cubic forms”, North Holland Math. Library Vol. 4, 1974.Google Scholar
  7. [7]
    E. Witt, “Zerlegung reeler algebraischer Funktionen in Quadrate Shiefkörper über reelem Funktionenkorper”, J. für Math. 171, 4–11, (1934).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • F. R. DeMeyer

There are no affiliations available

Personalised recommendations