Advertisement

Some remarks on the uniform convergence of Gaussian and Rademacher Fourier quadratic forms

  • M. Ledoux
  • M. B. Marcus
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1193)

Keywords

Quadratic Form Gaussian Process Uniform Convergence Entropy Condition Independent Copy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Bonami: Etude des coefficients de Fourier des fonctions de LP(G). Ann. Inst. Fourier (Grenoble) 20, p. 335–402 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. Borell: Tail probabilities in Gauss space. Vector space measures and applications, Dublin 1978. Lecture Notes in Math. 644, p. 71–82, Springer (1979).Google Scholar
  3. [3]
    C. Borell: On the integrability of Banach space valued Walsh polynomials. Séminaire de Probabilités XIII. Lecture Notes in Math. 721, p. 1–3, Springer (1979).MathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Borell: On polynomials chaos and integrability. Prob. and Math. Stat. 3, p. 191–203 (1984).MathSciNetzbMATHGoogle Scholar
  5. [5]
    X. Fernique: Régularité de fonctions aléatoires non gaussiennes. Ecole d'été de St-Flour 1981. Lecture Notes in Math. 976, p. 1–74, Springer (1983).MathSciNetGoogle Scholar
  6. [6]
    X. Fernique: Fonctions aléatoires gaussiennes à valeurs vectorielles. Preprint (1985).Google Scholar
  7. [7]
    S. Kwapien: Decoupling inequalities for polynomial chaos. Preprint (1985).Google Scholar
  8. [8]
    M.B. Marcus and G. Pisier: Random Fourier series with applications to harmonic analysis. Ann. Math. Studies 101, Princeton Univ. Press (1981).Google Scholar
  9. [9]
    G. Pisier: Les inégalités de Khintchine-Kahane d'après C. Borell. Séminaire sur la géométrie des espaces de Banach 1977–78, Ecole Polytechnique, Paris (1978).Google Scholar
  10. [10]
    G. Pisier: Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues. Séminaire sur la géométrie des espaces de Banach 1977–78, Ecole Polytechnique, Paris (1978).Google Scholar
  11. [11]
    G. Pisier: Some applications of the metric entropy condition to harmonic analysis. Banach spaces, harmonic analysis and probability, Proceedings 1980–81. Lecture Notes in Math. 995, p. 123–154, Springer (1983).MathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Schreiber: Fermeture en probabilité des chaos de Wiener. C.R. Acad. Sci. Paris, Série A, 265, p. 859–862 (1967).MathSciNetzbMATHGoogle Scholar
  13. [13]
    M. Talagrand: Régularité des processus gaussiens. C.R. Acad. Sci. Paris, Série I, 301, p. 379–381 (1985).MathSciNetzbMATHGoogle Scholar
  14. [14]
    D. Varberg: Convergence of quadratic forms in independent random variables. Ann. Math. Statist. 37, p. 567–576 (1966).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • M. Ledoux
    • 1
  • M. B. Marcus
    • 2
  1. 1.Départment de MathématiqueUniversité Louis-PasteurStrasbourgFrance
  2. 2.Department of MathematicsTexas A & M UniversityCollege StationU.S.A.

Personalised recommendations