Advertisement

Rotation sequences and bifurcations structure of one-dimensional endomorphisms

  • Christian Mira
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1163)

Keywords

Continuous Curve Topological Entropy Bifurcation Structure Rotation Sequence Decimal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1](a)
    Myrberg, P.J.: Iteration der reellen Polynome zweiten Grades I, II, III. Ann.Acad.Sci.Fenn., Ser. A 256, p.1–10 (1958).MathSciNetzbMATHGoogle Scholar
  2. [1](b)
    Myrberg, P.J.: Iteration der reellen Polynome zweiten Grades I, II, III. Ann.Acad.Sci.Fenn., Ser. A 268, p.1–13 (1959), (c) 336, p.1–8 (1963).MathSciNetzbMATHGoogle Scholar
  3. [2]
    Myrberg, P.J.: Iteration von Quadratwurzeloperationen. Ann.Acad.Sci.Fenn., Ser.A, 259, p.1–10 (1958).MathSciNetzbMATHGoogle Scholar
  4. [3]
    Gumowski, I., Mira, C.: Dynamique Chaotique. Cepadues Editions, Toulouse, (1980).Google Scholar
  5. [4]
    Collet, P., Eckman, J.P.: Iterated Maps on the Interval as Dynamical Systems. Birkhauser, 1980.Google Scholar
  6. [5]
    Metropolis, N., Stein, M.L.: On finite limit sets for transformations on the unit interval. Journal of Combin.Th.(A), 15, p.25–44 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  7. [6]
    Mira, C.: Systèmes à dynamique complexe et bifurcations. RAIRO Automatique, 12, no.1, p.63–94 (1978); 12, no.2, p. 171–190 (1978).MathSciNetzbMATHGoogle Scholar
  8. [7]
    Gumowski, I., Mira, C.: Accumulations de bifurcations dans une récurrence. C.R.Acad.Sc.Paris (A), 281, p.45–48 (1975).MathSciNetzbMATHGoogle Scholar
  9. [8]
    Mira, C.: Accumulations de bifurcations et "structures boites emboiteés dans les recurrences et transformations ponctuelles. Proceedings of ICNO 7th Berlin 1975, Akademic Verlag, Berlin, p.81–93 (1977).Google Scholar
  10. [9]
    Mira, C.: Actes des Journées Analyse Non Linéaire, Application à la Mécanique (mai 1983), IRMA, Lille, vol. 5, fasc.2, p.M 1–11.Google Scholar
  11. [10]
    Mira, C.: Coexistence de structures de bifurcations boites emboitées et boites en files dans un endomorphisme uni-dimensionnel. Publication "Syst.Dyn.", INSA 83–2 (1983).Google Scholar
  12. [11]
    Guckenheimer, J.: Bifurcations theory and applications in scientific disciplines. Ann. of N.Y.Acad. of Sc. vol. 316, p.78–85 (1979).MathSciNetCrossRefGoogle Scholar
  13. [12]
    Gillot, C.: Caractérisation des suites de rotation d'un endomorphisme unimodal de (0,1). C.R.Acad.Sc.Paris (1), 293, (1981), p.249–252.MathSciNetzbMATHGoogle Scholar
  14. [13]
    Gillot, C.: Structures des itinéraires symboliques et de l'entropie topoloque des transformations unimodales. Thèse de Doctorat ès-Sciences Mathémathiques, Université Paul Sabatier, Toulouse, no. 1134, 15 mars 1984.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Christian Mira
    • 1
  1. 1.I.N.S.A.Toulouse Cedex

Personalised recommendations