On the definitions of attractors

  • M. Cosnard
  • J. Demongeot
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1163)


We introduce the notion of attractor and present its historical evolution. Then we show that previous definitions are too stringent. We present two equivalent definitions of attractors, show that in this case strange attractors are indeed attractors and give some properties.


Strange Attractor Morse Index Strong Attractor Previous Definition Weak Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Birkhoff, G.D.: Dynamical systems, AMS Colloqu. Pub. 9, New York (1927).CrossRefzbMATHGoogle Scholar
  2. [2]
    Bhatia, N.P., Szegö, G.P.: Dynamical systems: stability theory and applications, Lect. Notes Math. 35, Springer Verlag (1867).Google Scholar
  3. [3]
    Bowen, R.: On Axiom A diffeomorphisms,Reg.Conf. Series Math.35, AMS Providence (1878).Google Scholar
  4. [4]
    Conley, C.: Isolated invariant sets and the Morse index, Reg.Conf.Series Math. 38, AMS Providence (1978).Google Scholar
  5. [5]
    Cosnard, M.: "Etude des solutions de l'équation fonctionnelle de Feigenbaum", Actes Coll. Dijon Astérisque 98–99, p.143–152 (1983).zbMATHGoogle Scholar
  6. [6]
    Cosnard, M., Demongeot, J.: "Attracteurs: une approche déterministe", C.R.Acad.Sc.Paris 300, 15 (1985) p.551–555.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Demongeot, J.: Systèmes dynamiques et champs aléatoires application en biologie fundamentale, thèse, Grenoble (1983).Google Scholar
  8. [8]
    Dubuc, S.: "Une équation fonctionelle pour diverses constructions", these proceedings.Google Scholar
  9. [9]
    Feigenbaum, M.J.: "The universal metric properties of nonlinear transformations", J. Stat. Phys. 21, 6,p.669–709 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Garrido, L., Simo C.: "Some ideas about strange attractors", Lect. Notes Phys. 179, Springer Verlag (1983).Google Scholar
  11. [11]
    Guckenheimer, J., Holmes P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Applied Math. Science 42, Springer Verlag (1983).Google Scholar
  12. [12]
    Lozi, R.: Modèles mathématiques qualitatifs simples et consistants pour l'étude de quelques systèmes dynamiques expérimentaux, thèse, Nice (1983).Google Scholar
  13. [13]
    Nemytskii, V.V., Stepanov, V.V.: Qualitative theory of differential equations, Princeton Univ. Press, New York (1960).zbMATHGoogle Scholar
  14. [14]
    Ruelle, D.: "Small random perturbations and the definition of attractors", Comm. Math. Phys. 82, p.137–151 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Sinai, Y.G.: "The stochasticity of dynamical systems", Sel. Math. Sov. 1, p.100–119 (1981).MathSciNetGoogle Scholar
  16. [16]
    Smale, S.: "Differentiable dynamical systems", Bull. AMS Soc. 73, p.747–817 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Thibault, R.: "Competition of a strange attractor with attractive cycle", these proceedings.Google Scholar
  18. [18]
    Thom, R.: Modèlesmathématiques de la morphogénèse, C.Bourgeois Ed., Paris (1980).Google Scholar
  19. [19]
    Williams, R.F.: "Expanding attractors", Publ. Math. IHES 43, p.169–203 (1974).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • M. Cosnard
    • 1
  • J. Demongeot
    • 1
  1. 1.Laboratoire TIM3Université de GrenobleSaint Martin d'Heres

Personalised recommendations