Homomorphisms from linear groups over division rings to algebraic groups

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1185)


Algebraic Group Simple Root Parabolic Subgroup Maximal Torus Dynkin Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Borel, Linear Algebraic Groups. notes by H.Bass. New York, W.A.Benjania 1969.Google Scholar
  2. [2]
    A. Borel, T.A. Springer, Rationality properties of linear algebraic groups II. Tohoku Math. J. 20. 443–497. (1968).MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    A. Borel, J. Tits, Homomorphismes "abstraits" de groups algébriques simples. Ann. of Math. 97. 499–571 (1973).MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    A. Borel, J. Tits, Groupes réductifs. Inst. Hautes Etudes Sci. Publ. Math. 27. 55–150 (1960).CrossRefMATHGoogle Scholar
  5. [5]
    A. Borel, J. Tits, Compléments à l'article "Groupes réductifs". Inst. Hautes Etudes Sci. Publ. Math. 41, 253–276 (1972).CrossRefMATHGoogle Scholar
  6. [6]
    N.Bourbaki, Groupes et algébres de Lie. Paris, Hermann ch 4–6. 1968.Google Scholar
  7. [7]
    C.Chevalley, Séminaire sur la classification des groups de Lie algebriques. Paris, Ecole Norm. Sup 1956–1958.Google Scholar
  8. [8]
    J. Dieudonné, La géométrie des groupes classiques. 3rd ed. Berlin-Heidellberg-Nes York, Springer 1971.MATHGoogle Scholar
  9. [9]
    L.K. Hua, Z.X. Wan, Classical groups, Science and Technomogy press (In Chinese), Schanghai 1963.Google Scholar
  10. [10]
    D. James, W. Waterhouse, B. Weisfeiler, Abstract homomorphisms of algebraic groups: problems and bibliography. Comm. in Algebra, 9 (1), 95–144 (1981).MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    S.X. Liu, Rings and Algebras. (In Chinese) Science Press. Beijing 1983.Google Scholar
  12. [12]
    D.Mumford, Introduction to algebraic geometry. Harvard notes.Google Scholar
  13. [13]
    O. Schreier & B.L. van der Waerden, Die Automorphismen der Projektiven Gruppen. Abh. Math. Sem. Univer. Hamber. 6(1928). 303–322.CrossRefMATHGoogle Scholar
  14. [14]
    R. Steinberg, Abstract homomorphisms of simple algebraic groups. Sem. Bourbaki (1972–1973) Exp 435. Lect. Notes in Math. 383. Berlin-Heidelberg-New York, Springer 1974.Google Scholar
  15. [15]
    R.Steinberg, Lecture on Chevalley Groups. mimeographed lecture notes. New Haven, Yale Univ. Math. Dept. 1968.Google Scholar
  16. [16]
    J. Tits, Classification of algebraic semisimple groups. Procedings of symposia in pure Math. Vol. IX. Amer. Math. Soc. 1966.Google Scholar
  17. [17]
    B.Weisfeiler, Abstract homomorphisms between subgroups of algebraic groups. Notre Dame University Lecture Notes Series (1982).Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Yu Chen
    • 1
  1. 1.Institute of Systems ScienceAcademia SinicaBeijingChina

Personalised recommendations