Conjugacy classes in algebraic groups

  • T. A. Springer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1185)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.V. Alexeevsky, Component groups of centralizers for unipotent elements in semisimple algebraic groups (in Russian), Trudy Tbilissk. Math. Inst. 62 (1979), 5–28.Google Scholar
  2. [2]
    P. Bala, R.W. Carter, Classes of unipotent elements in simple algebraic groups, Math. Proc. Camb. Phil. Soc. 79 (1976), 401–425 and 80 (1976), 1–18.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    P. Beardsly, R.W. Richardson, Etale slices for algebraic transformation groups in characteristic p, to appear.Google Scholar
  4. [4]
    A. Borel, Linear algebraic groups, New York, Benjamin, 1969.MATHGoogle Scholar
  5. [5]
    A. Borel et al. Seminar on algebraic groups and related finite groups, Lect. Notes in Math. no. 131, Springer-Verlag, 1970.Google Scholar
  6. [6]
    W. Borho, R. MacPherson, Représentations de groupes de Weyl et homologie d'intersection pour les variétés nilpotentes, C.R. Acad. Sc. Paris 292 (1981).Google Scholar
  7. [7]
    W. Borho, J.-L. Brylinski, Differential operators on homogeneous spaces I, Inv. Math. 69 (1982), 437–476.CrossRefMATHGoogle Scholar
  8. [8]
    W. Borho, R. MacPherson, Partial resolutions of nilpotent varieties, in: Analyse et topologie sur les espaces singuliers Astérisque vol. 101–102, p. 23–74, Soc. Math. Fr. 1983.Google Scholar
  9. [9]
    N. Bourbaki, Groupes et algèbres de Lie, chap. IV,V,VI, Paris, Hermann, 1968.MATHGoogle Scholar
  10. [10]
    Combinatoire et représentation du groupe symétrique (Strasbourg 1976), Lect. Notes in Math. no. 579, Springer-Verlag, 1977.Google Scholar
  11. [11]
    E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. Ser. 2, 6 (1957), 111–245 (= Math. Sbornik N.S. 30 (1952), 349–462).MATHGoogle Scholar
  12. [12]
    M. Goresky, R. MacPherson, Intersection homology II, Inv. Math. 71 (1983), 77–129.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    W. Hesselink, Singularities in the nilpotent scheme of a classical group, Trans. Amer. Math. Soc. 222 (1976), 1–32.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    D.F. Holt, N. Spaltenstein, Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic, to appear.Google Scholar
  15. [15]
    J.E. Humphreys, Linear algebraic groups, Springer-Verlag, 1975.Google Scholar
  16. [16]
    D.E. Knuth, Permutation matrices and generalised Young tableaux, Pac. J. Math. 34 (1970), 709–727.CrossRefMATHGoogle Scholar
  17. [17]
    B. Kostant, Lie group representations in polynomial rings, Amer. J. Math. 85 (1963), 327–404.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    G. Lusztig, Intersection cohomology complexes on a reductive group, Inv. Math. 75 (1984), 205–273.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    G. Lusztig, N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. 19 (1979), 41–52.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, 1979.Google Scholar
  21. [21]
    K. Pommerening, Uber die unipotenten Klassen reduktiver Gruppen II, J. Alg. 65 (1980), 373–398.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    P. Slodowy, Simple singularities and simple algebraic groups, Lect. Notes in Math. no. 815, Springer-Verlag, 1980.Google Scholar
  23. [23]
    N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold, Proc. Kon. Ak. v. Wet. Amsterdam, Ser. A, 79 (1976), 452–456.MathSciNetMATHGoogle Scholar
  24. [24]
    N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lect. Notes in Math. no. 946, Springer-Verlag, 1982.Google Scholar
  25. [25]
    T.A. Springer, The unipotent variety of a semisimple group, in: Algebraic geometry (Bombay Colloquium 1968), p. 373–391, Oxford Univ. Press, 1969.Google Scholar
  26. [26]
    T.A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Inv. Math. 36 (1976), 173–207.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    T.A. Springer, Linear algebraic groups, (2nd ed.) Birkhäuser, 1981.Google Scholar
  28. [28]
    T.A. Springer, Quelques applications de la cohomologie d'intersection, (sém. Bourbaki no. 582), Astérisque nr. 92–93, p. 249–273, Soc. Math. Fr., 1982.Google Scholar
  29. [29]
    R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    R. Steinberg, Regular elements of semisimple algebraic groups, Publ. Math. I.H.E.S. no. 25 (1965), 49–80.Google Scholar
  31. [31]
    R. Steinberg, Conjugacy classes in algebraic groups, Lect. Notes in Math. no. 366, Springer-Verlag, 1974.Google Scholar
  32. [32]
    R. Steinberg, On the desingularization of the unipotent variety, Inv. Math. 36 (1976), 209–224.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • T. A. Springer
    • 1
  1. 1.Mathematisch InstituutUtrecht

Personalised recommendations