Conjugacy classes in algebraic groups

  • T. A. Springer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1185)


Conjugacy Class Algebraic Group Weyl Group Parabolic Subgroup Irreducible Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.V. Alexeevsky, Component groups of centralizers for unipotent elements in semisimple algebraic groups (in Russian), Trudy Tbilissk. Math. Inst. 62 (1979), 5–28.Google Scholar
  2. [2]
    P. Bala, R.W. Carter, Classes of unipotent elements in simple algebraic groups, Math. Proc. Camb. Phil. Soc. 79 (1976), 401–425 and 80 (1976), 1–18.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    P. Beardsly, R.W. Richardson, Etale slices for algebraic transformation groups in characteristic p, to appear.Google Scholar
  4. [4]
    A. Borel, Linear algebraic groups, New York, Benjamin, 1969.MATHGoogle Scholar
  5. [5]
    A. Borel et al. Seminar on algebraic groups and related finite groups, Lect. Notes in Math. no. 131, Springer-Verlag, 1970.Google Scholar
  6. [6]
    W. Borho, R. MacPherson, Représentations de groupes de Weyl et homologie d'intersection pour les variétés nilpotentes, C.R. Acad. Sc. Paris 292 (1981).Google Scholar
  7. [7]
    W. Borho, J.-L. Brylinski, Differential operators on homogeneous spaces I, Inv. Math. 69 (1982), 437–476.CrossRefMATHGoogle Scholar
  8. [8]
    W. Borho, R. MacPherson, Partial resolutions of nilpotent varieties, in: Analyse et topologie sur les espaces singuliers Astérisque vol. 101–102, p. 23–74, Soc. Math. Fr. 1983.Google Scholar
  9. [9]
    N. Bourbaki, Groupes et algèbres de Lie, chap. IV,V,VI, Paris, Hermann, 1968.MATHGoogle Scholar
  10. [10]
    Combinatoire et représentation du groupe symétrique (Strasbourg 1976), Lect. Notes in Math. no. 579, Springer-Verlag, 1977.Google Scholar
  11. [11]
    E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. Ser. 2, 6 (1957), 111–245 (= Math. Sbornik N.S. 30 (1952), 349–462).MATHGoogle Scholar
  12. [12]
    M. Goresky, R. MacPherson, Intersection homology II, Inv. Math. 71 (1983), 77–129.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    W. Hesselink, Singularities in the nilpotent scheme of a classical group, Trans. Amer. Math. Soc. 222 (1976), 1–32.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    D.F. Holt, N. Spaltenstein, Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic, to appear.Google Scholar
  15. [15]
    J.E. Humphreys, Linear algebraic groups, Springer-Verlag, 1975.Google Scholar
  16. [16]
    D.E. Knuth, Permutation matrices and generalised Young tableaux, Pac. J. Math. 34 (1970), 709–727.CrossRefMATHGoogle Scholar
  17. [17]
    B. Kostant, Lie group representations in polynomial rings, Amer. J. Math. 85 (1963), 327–404.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    G. Lusztig, Intersection cohomology complexes on a reductive group, Inv. Math. 75 (1984), 205–273.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    G. Lusztig, N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. 19 (1979), 41–52.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, 1979.Google Scholar
  21. [21]
    K. Pommerening, Uber die unipotenten Klassen reduktiver Gruppen II, J. Alg. 65 (1980), 373–398.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    P. Slodowy, Simple singularities and simple algebraic groups, Lect. Notes in Math. no. 815, Springer-Verlag, 1980.Google Scholar
  23. [23]
    N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold, Proc. Kon. Ak. v. Wet. Amsterdam, Ser. A, 79 (1976), 452–456.MathSciNetMATHGoogle Scholar
  24. [24]
    N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lect. Notes in Math. no. 946, Springer-Verlag, 1982.Google Scholar
  25. [25]
    T.A. Springer, The unipotent variety of a semisimple group, in: Algebraic geometry (Bombay Colloquium 1968), p. 373–391, Oxford Univ. Press, 1969.Google Scholar
  26. [26]
    T.A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Inv. Math. 36 (1976), 173–207.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    T.A. Springer, Linear algebraic groups, (2nd ed.) Birkhäuser, 1981.Google Scholar
  28. [28]
    T.A. Springer, Quelques applications de la cohomologie d'intersection, (sém. Bourbaki no. 582), Astérisque nr. 92–93, p. 249–273, Soc. Math. Fr., 1982.Google Scholar
  29. [29]
    R. Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    R. Steinberg, Regular elements of semisimple algebraic groups, Publ. Math. I.H.E.S. no. 25 (1965), 49–80.Google Scholar
  31. [31]
    R. Steinberg, Conjugacy classes in algebraic groups, Lect. Notes in Math. no. 366, Springer-Verlag, 1974.Google Scholar
  32. [32]
    R. Steinberg, On the desingularization of the unipotent variety, Inv. Math. 36 (1976), 209–224.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • T. A. Springer
    • 1
  1. 1.Mathematisch InstituutUtrecht

Personalised recommendations