Modular representations of reductive groups

  • J. C. Jantzen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1185)


Exact Sequence Line Bundle Algebraic Group Spectral Sequence Composition Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.H. Andersen: Cohomology of line bundles on G/B, Ann. Scient. Éc. Norm. Sup. (4) 12 (1979), 85–100MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    H.H. Andersen: The first cohomology group of a line bundle on G/B, Invent. math. 51 (1979), 287–296MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    H.H. Andersen: The strong linkage principle, J. reine angew. Math. 315 (1980), 53–59MathSciNetMATHGoogle Scholar
  4. [4]
    H.H. Andersen: The Frobenius morphism on the cohomology of homogeneous vector bundles on G/B, Ann. of Math. 112 (1980), 113–121MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    H.H. Andersen: On the structure of Weyl modules, Math. Z. 170 (1980), 1–14MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    H.H. Andersen: On the structure of the cohomology of line bundles on G/B, J. Algebra 71 (1981), 245–258MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    H.H. Andersen: Extensions of modules for algebraic groups, Amer. J. Math. 106 (1984), 489–504MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    H.H. Andersen: An inversion formula for the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math.Google Scholar
  9. [9]
    H.H. Andersen: Filtrations of cohomology modules for Chevalley groups, Ann. Scient. Éc. Norm. Sup. (4) 16 (1983), 495–528MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    H.H. Andersen: Schubert varieties and Demazure's character formulaGoogle Scholar
  11. [11]
    H.H. Andersen, J.C. Jantzen: Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), 487–525MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    E. Cline, B. Parshall, L. Scott: Induced modules and affine quotients, Math. Ann. 230 (1977), 1–14MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    E. Cline, B. Parshall, L. Scott: On injective modules for infinitesimal algebraic groups I, Proc. London Math. Soc.Google Scholar
  14. [14]
    E. Cline, B. Parshall, L. Scott, W. van der Kallen: Rational and generic cohomology, Invent. math. 39 (1977), 143–163MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    S. Donkin: The blocks of a semi-simple algebraic group, J. Algebra 67 (1980), 36–53MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S. Donkin: Tensor products and filtrations for rational representations of algebraic groupsGoogle Scholar
  17. [17]
    W. Haboush: Homogeneous vector bundles and reductive subgroups of reductive algebraic groups, Amer. J. Math. 100 (1978), 1123–1137MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    W. Haboush: Central differential operators on split semi-simple groups over fields of positive characteristic, pp. 35–85 in: Séminaire d'Algèbre P. Dubreil et M.-P. Malliavin (Proc. 1979), Lecture Notes in Mathematics 795, Berlin/Heidelberg/New York 1980 (Springer)CrossRefGoogle Scholar
  19. [19]
    W. Haboush: A short proof of the Kempf vanishing theorem, Invent. math. 56 (1980), 109–112MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    R. Hartshorne: Algebraic Geometry, New York/Heidelberg/Berlin 1977 (Springer)CrossRefMATHGoogle Scholar
  21. [21]
    J.E. Humphreys: Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19 (1971), 51–79MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J.E. Humphreys: Linear Algebraic Groups, Berlin/Heidelberg/New York 1975 (Springer)CrossRefMATHGoogle Scholar
  23. [23]
    J.E. Humphreys, J.C. Jantzen: Blocks and indecomposable modules for semisimple algebraic groups, J. Algebra 54 (1978), 494–503MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    B. Iversen: The geometry of algebraic groups, Advances in Math. 20 (1976), 57–85MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    J.C. Jantzen: Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-Algebren, Math. Z. 140 (1974), 127–149MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    J.C. Jantzen: Darstellungen halbeinfacher Gruppen und kontravariante Formen, J. reine angew. Math. 290 (1977), 157–199MathSciNetMATHGoogle Scholar
  27. [27]
    J.C. Jantzen: Über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren, J. Algebra 49 (1977), 441–469MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    J.C. Jantzen: Weyl modules for groups of Lie type, pp. 291–300 in M. Collins (ed.), Finite Simple Groups II (Proc. Durham 1978), London/New York 1980 (Academic Press)Google Scholar
  29. [29]
    J.C. Jantzen: Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. reine angew. Math. 317 (1980), 157–199MathSciNetMATHGoogle Scholar
  30. [30]
    V. Kac, B. Weisfeiler: Coadjoint action of a semisimple algebraic group and the center of the enveloping algebra in characteristic p, Indag. math. 38 (1976), 136–151MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    S. Kato: Spherical functions and a q-analogue of Kostant's weight multiplicity formula, Invent. math. 66 (1982), 461–468MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    S. Kato: On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 55 (1985), 103–130MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    G. Kempf: Linear systems on homogeneous spaces, Ann. of Math. 103 (1976), 557–591MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    G. Kempf: The Grothendieck-Cousin complex of an induced representation, Adv. in Math. 29 (1978), 310–396MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    M. Koppinen: On the composition factors of Weyl modules, Math. Scand. 51 (1982), 212–216MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    M. Koppinen: On the translation functors for a semisimple algebraic group, Math. Scand. 51 (1982), 217–226MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    S. Lang: Algebra (2nd ed.), Reading, Mass. 1984 (Addison-Wesley)MATHGoogle Scholar
  38. [38]
    G. Lusztig: Some problems in the representation theory of finite Chevalley groups, pp. 313–317 in: B. Cooperstein, G. Mason (eds.), The Santa Cruz Conference on Finite Groups (1979), Proc. Symp. Pure Math. 37, Providence, R.I. 1980 (Amer. Math. Soc.)CrossRefGoogle Scholar
  39. [39]
    V.B. Mehta, A. Ramanathan: Frobenius splitting and cohomology vanishing for Schubert varieties (to appear)Google Scholar
  40. [40]
    J. O'Halloran: Cohomology of a Borel subgroup of a Chevelley group (to appear)Google Scholar
  41. [41]
    S. Ramanan, A. Ramanathan: Projective normality of flag varieties and Schubert varieties, Invent. math. 79 (1985), 217–224MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    C.S. Seshadri: Line bundles on Schubert varieties (to appear)Google Scholar
  43. [43]
    T.A. Springer: Linear Algebraic Groups, Boston/Basel/Stuttgart 1981 (Birkhäuser)MATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. C. Jantzen
    • 1
    • 2
  1. 1.Mathematisches Institut der UniversitätBonn 1Germany
  2. 2.Mathematisches Seminar der UniversitätHamburg 13Germany

Personalised recommendations