Modular representations of reductive groups

  • J. C. Jantzen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1185)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.H. Andersen: Cohomology of line bundles on G/B, Ann. Scient. Éc. Norm. Sup. (4) 12 (1979), 85–100MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    H.H. Andersen: The first cohomology group of a line bundle on G/B, Invent. math. 51 (1979), 287–296MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    H.H. Andersen: The strong linkage principle, J. reine angew. Math. 315 (1980), 53–59MathSciNetMATHGoogle Scholar
  4. [4]
    H.H. Andersen: The Frobenius morphism on the cohomology of homogeneous vector bundles on G/B, Ann. of Math. 112 (1980), 113–121MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    H.H. Andersen: On the structure of Weyl modules, Math. Z. 170 (1980), 1–14MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    H.H. Andersen: On the structure of the cohomology of line bundles on G/B, J. Algebra 71 (1981), 245–258MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    H.H. Andersen: Extensions of modules for algebraic groups, Amer. J. Math. 106 (1984), 489–504MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    H.H. Andersen: An inversion formula for the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math.Google Scholar
  9. [9]
    H.H. Andersen: Filtrations of cohomology modules for Chevalley groups, Ann. Scient. Éc. Norm. Sup. (4) 16 (1983), 495–528MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    H.H. Andersen: Schubert varieties and Demazure's character formulaGoogle Scholar
  11. [11]
    H.H. Andersen, J.C. Jantzen: Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), 487–525MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    E. Cline, B. Parshall, L. Scott: Induced modules and affine quotients, Math. Ann. 230 (1977), 1–14MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    E. Cline, B. Parshall, L. Scott: On injective modules for infinitesimal algebraic groups I, Proc. London Math. Soc.Google Scholar
  14. [14]
    E. Cline, B. Parshall, L. Scott, W. van der Kallen: Rational and generic cohomology, Invent. math. 39 (1977), 143–163MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    S. Donkin: The blocks of a semi-simple algebraic group, J. Algebra 67 (1980), 36–53MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S. Donkin: Tensor products and filtrations for rational representations of algebraic groupsGoogle Scholar
  17. [17]
    W. Haboush: Homogeneous vector bundles and reductive subgroups of reductive algebraic groups, Amer. J. Math. 100 (1978), 1123–1137MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    W. Haboush: Central differential operators on split semi-simple groups over fields of positive characteristic, pp. 35–85 in: Séminaire d'Algèbre P. Dubreil et M.-P. Malliavin (Proc. 1979), Lecture Notes in Mathematics 795, Berlin/Heidelberg/New York 1980 (Springer)CrossRefGoogle Scholar
  19. [19]
    W. Haboush: A short proof of the Kempf vanishing theorem, Invent. math. 56 (1980), 109–112MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    R. Hartshorne: Algebraic Geometry, New York/Heidelberg/Berlin 1977 (Springer)CrossRefMATHGoogle Scholar
  21. [21]
    J.E. Humphreys: Modular representations of classical Lie algebras and semisimple groups, J. Algebra 19 (1971), 51–79MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J.E. Humphreys: Linear Algebraic Groups, Berlin/Heidelberg/New York 1975 (Springer)CrossRefMATHGoogle Scholar
  23. [23]
    J.E. Humphreys, J.C. Jantzen: Blocks and indecomposable modules for semisimple algebraic groups, J. Algebra 54 (1978), 494–503MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    B. Iversen: The geometry of algebraic groups, Advances in Math. 20 (1976), 57–85MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    J.C. Jantzen: Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-Algebren, Math. Z. 140 (1974), 127–149MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    J.C. Jantzen: Darstellungen halbeinfacher Gruppen und kontravariante Formen, J. reine angew. Math. 290 (1977), 157–199MathSciNetMATHGoogle Scholar
  27. [27]
    J.C. Jantzen: Über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren, J. Algebra 49 (1977), 441–469MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    J.C. Jantzen: Weyl modules for groups of Lie type, pp. 291–300 in M. Collins (ed.), Finite Simple Groups II (Proc. Durham 1978), London/New York 1980 (Academic Press)Google Scholar
  29. [29]
    J.C. Jantzen: Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. reine angew. Math. 317 (1980), 157–199MathSciNetMATHGoogle Scholar
  30. [30]
    V. Kac, B. Weisfeiler: Coadjoint action of a semisimple algebraic group and the center of the enveloping algebra in characteristic p, Indag. math. 38 (1976), 136–151MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    S. Kato: Spherical functions and a q-analogue of Kostant's weight multiplicity formula, Invent. math. 66 (1982), 461–468MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    S. Kato: On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 55 (1985), 103–130MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    G. Kempf: Linear systems on homogeneous spaces, Ann. of Math. 103 (1976), 557–591MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    G. Kempf: The Grothendieck-Cousin complex of an induced representation, Adv. in Math. 29 (1978), 310–396MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    M. Koppinen: On the composition factors of Weyl modules, Math. Scand. 51 (1982), 212–216MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    M. Koppinen: On the translation functors for a semisimple algebraic group, Math. Scand. 51 (1982), 217–226MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    S. Lang: Algebra (2nd ed.), Reading, Mass. 1984 (Addison-Wesley)MATHGoogle Scholar
  38. [38]
    G. Lusztig: Some problems in the representation theory of finite Chevalley groups, pp. 313–317 in: B. Cooperstein, G. Mason (eds.), The Santa Cruz Conference on Finite Groups (1979), Proc. Symp. Pure Math. 37, Providence, R.I. 1980 (Amer. Math. Soc.)CrossRefGoogle Scholar
  39. [39]
    V.B. Mehta, A. Ramanathan: Frobenius splitting and cohomology vanishing for Schubert varieties (to appear)Google Scholar
  40. [40]
    J. O'Halloran: Cohomology of a Borel subgroup of a Chevelley group (to appear)Google Scholar
  41. [41]
    S. Ramanan, A. Ramanathan: Projective normality of flag varieties and Schubert varieties, Invent. math. 79 (1985), 217–224MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    C.S. Seshadri: Line bundles on Schubert varieties (to appear)Google Scholar
  43. [43]
    T.A. Springer: Linear Algebraic Groups, Boston/Basel/Stuttgart 1981 (Birkhäuser)MATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. C. Jantzen
    • 1
    • 2
  1. 1.Mathematisches Institut der UniversitätBonn 1Germany
  2. 2.Mathematisches Seminar der UniversitätHamburg 13Germany

Personalised recommendations