Problems and result on additive properties of general sequences, IV

  • P. Erdös
  • A. Sárközy
  • V. T. Sós
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1122)


Additive Property Versus Versus Versus Monotonity Property Versus Versus Versus Versus Infinite Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Dirac, Note on a problem in additive number theory, J. London Math. Soc. 26 (1951), 312–313.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. Erdös, Problems and results in additive number theory, Colloque sur la Théorie des Nombres (CBRM) (Bruxelles, 1956), pp. 127–137.Google Scholar
  3. 3.
    P. Erdös and A. Rényi, Additive properties of random sequences of positive integers, Acta Arithmetica 6 (1960), pp. 83–110.MathSciNetzbMATHGoogle Scholar
  4. 4.
    P. Erdös and A. Sárközy, Problems and results on additive properties of general sequences, I, Pacific Journal, to appear.Google Scholar
  5. 5.
    P. Erdös and A. Sárközy,-"-, II, to appear.Google Scholar
  6. 6.
    P. Erdös, A. Sárközy and V. T. Sós,-"-, to appearGoogle Scholar
  7. 7.
    H. Halberstam and K. F. Roth, Sequences, Springer-Verlag, 1983.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • P. Erdös
  • A. Sárközy
  • V. T. Sós

There are no affiliations available

Personalised recommendations