Golod homomorphisms

  • Luchezar L. Avramov
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1183)


Exact Sequence Spectral Sequence Local Ring Formal Power Series Grade Vector Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Av1]
    L.L. Avramov, Small homomorphisms of local rings. J. Algebra 50 (1978), 400–453.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Av2]
    L.L. Avramov, Free Lie subalgebras of the cohomology of local rings. Trans. Amer. Math. Soc. 270 (1982), 589–608.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Av3]
    L.L. Avramov, Local algebra and rational homotopy, in Proceedings of the conference "Méthodes d'algèbre homotopique en topologie", In Homotopie Algébrique et Algèbre Locale, Astérisque 113/114 (1984), 15–43.MathSciNetGoogle Scholar
  4. [Av4]
    L.L. Avramov, Homotopy Lie algebras for commutative rings and DG algebras. To appear.Google Scholar
  5. [Ba]
    J. Backelin, Golod attached rings with few relations (III). Reports, Dept. of Math., Univ. of Stockholm, No. 13, 1983.Google Scholar
  6. [Ca]
    H. Cartan, Algèbres d'Eilenberg-MacLane (Séminaire ENS, 1954–1955, Exposés 2 à 11), in Oeuvres, Volume III 1309–1394, Springer-Verlag, Berlin, 1979.Google Scholar
  7. [Go]
    E.S. Golod, On the homologies of certain local rings. Dokl. Akad. Nauk SSSR 144 (1962), 479–482 (in Russian); English translation: Soviet Math. Dokl. 3 (1962), 745–748.MathSciNetGoogle Scholar
  8. [Gu]
    T.H. Gulliksen, Massey operations and the homology of certain local rings. J. Algebra 22 (1972), 223–232.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [GM]
    V.K.A.M. Gugenheim and J.P. May, On the theory and applications of differential torsion products. Memoirs Amer. Math. Soc. 142 (1974).Google Scholar
  10. [Lem]
    J.-M. Lemaire, Algèbres connexes et homologie des éspaces de lacets. Lecture Notes in Math. 422, Springer-Verlag, Berlin, 1974.CrossRefzbMATHGoogle Scholar
  11. [Lev1]
    G. Levin, Local rings and Golod homorphisms. J. Algebra 37 (1975), 266–289.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Lev2]
    G. Levin, Lectures on Golod homomorphisms. Reports, Dept. Math., Univ. of Stockholm, No. 15, 1976.Google Scholar
  13. [Lev3]
    G. Levin, Large homomorphisms of local rings. Math. Scand. 46 (1980), 209–215.MathSciNetzbMATHGoogle Scholar
  14. [Lö]
    C. Löfwall, On the subalgebra generated by the one-dimensional elements of the Yoneda Ext-algebra. These proceedings.Google Scholar
  15. [Ma]
    J.P. May, Matric Massey products. J. Algebra 12 (1969), 533–568.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Mo]
    J.C. Moore, Algèbre homologique et homologie des éspaces classifiants. Séminaire H. Cartan, ENS 1959–1960, Exposé 7, Secrétariat Math., Paris, 1961.zbMATHGoogle Scholar
  17. [Ro]
    J.-E. Roos, Homology of loop spaces and of local rings. 18th Scandinavian Congress of Mathematics, Proceedings 1980, 441–468, Kirkhäuser, Basel, 1981.Google Scholar
  18. [Ta]
    D. Tanré, Homotopie rationnelle: Modèles de Chen, Quillen, Sullivan. Lecture Notes in Math. 1025, Springer-Verlag, Berlin, 1983.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Luchezar L. Avramov
    • 1
    • 2
  1. 1.Institute for Algebraic Meditation Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Institute of MathematicsUniversity of SofiaSofiaBulgaria

Personalised recommendations