Stochastic processes with sample paths in exponential Orlicz spaces

  • Michael B. Marcus
  • Gilles Pisier
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1153)


Probability Measure Gaussian Process Sample Path Orlicz Space Dual Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeAcosta, A., Stable measures and semi-norms, Ann. Probability, 3 (1975), 865–875.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Fernique, X., Régularité de Fonctions Aléatoires non gaussiennes, Ecole d’Eté de St. Flour, Lecture Notes in Math., 976 (1983), 7–69, Springer Verlag, New York.Google Scholar
  3. 3.
    Kahane, J. P., Some random series of functions, (1968), D. C. Health, Lexington, Mass. USAzbMATHGoogle Scholar
  4. 4.
    Marcus, M. B. and Pisier, G., Random Fourier series with applications to Harmonic Analysis, Ann. Math. Studies, Vol. 101 (1981), Princeton Univ. Press, Princeton, N.J.zbMATHGoogle Scholar
  5. 5.
    Marcus, M. B. and Pisier, G., Characterisations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Acta Mathematica, Vol. 152 (1984), 245–301.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Marcus, M. B. and Pisier, G., Some results on the continuity of stable processes and the domain of attraction of continuous stable processes, Ann. Inst. Henri Poincaré, Vol. 20, (1984), 177–199.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Morrow, G. On a Central Limit Theorem Motivated by Some Random Fourier Series with Dependent Coefficients, preprint.Google Scholar
  8. 8.
    Pisier, G., De nouvelles caracterisations des ensembles de Sidon, Mathematical Analysis and Applications, (19811), 686–726, in the series Advances in Math., Supplementary Studies, 7B, Academic Press, New York, N.Y.Google Scholar
  9. 9.
    Pisier, G., Some applications of the metric entropy condition to harmonic analysis, in Banach spaces, Harmonic Analysis and Probability, Proceeding 80–81. Lecture Notes in Math., 995 (1983), 123–154, Springer-Verlag, New York.CrossRefGoogle Scholar
  10. 10.
    Salem, R. and Zygmund, A., Some properties of trigonometric systems whose terms have random signs. Acta Mathematica, Vol. 91 (1954), 245–301.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Weber, M., Analyse Infinitesimal de Fonctions Aléatoires, Ecole d’Eté de St. Flour, Lecture Notes in Math., 976 (1983), 384–464, Springer Verlag, New York.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Michael B. Marcus
    • 1
  • Gilles Pisier
    • 2
  1. 1.Texas A&M UniversityCollege StationUSA
  2. 2.Université Paris VIParisFrance

Personalised recommendations