Intrinsic bounds on some real-valued stationary random functions

  • Christer Borell
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1153)


Continuous Distribution Function Stochastic Mechanic Continuous Probability Measure Unique Invariant Probability Measure Dome Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borell, C: Geometric bounds on the Ornstein-Uhlenbeck velocity process in equilibrium (to appear).Google Scholar
  2. 2.
    Borell, C.: Convex measures on locally convex spaces. Ark. Mat. 12(1974), 239–252.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Borell, C.: The Brunn-Minkowski inequality in Gauss spaces. Inventiones math. 30(1975), 207–216.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brascamp, H.J. and E.H. Lieb: On the extension of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Analysis 22(1976), 366–389.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carmona, R.: Regularity properties of Schrödinger and Dirichlet semigroups. J. Functional Analysis 33(1979), 259–296.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Courrège, P. and P. Renouard: Oscillateur anharmonique, measures quasi-in-variantes dans C(ℝ, ℝ) et théorie quantique des champs en dimension d=1, Astérisque 23–23(1975), 1–245.zbMATHGoogle Scholar
  7. 7.
    Ehrhard, A.: Symetrisation dans l’espace de Gauss. Math. Scand.53(1983), 281–301.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Friedman, A: Classes of solutions of linear systems of partial differential equations of parabolic type. Duke Math. J. 24(1957), 433–442.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Friedman, A.: Stochastic Differential Equations and Applications. Vol. 1. Academic Press, New York-San Francisco-London 1975.zbMATHGoogle Scholar
  10. 10.
    Landau, H.J. and L.A. Shepp: On the supremum of a Gaussian process. Sankyā Ser. A. 32(1971), 369–378.MathSciNetzbMATHGoogle Scholar
  11. 11.
    McKean, H.P.: Stochastic Integrals. Academic Press, New York-London 1969.zbMATHGoogle Scholar
  12. 12.
    Nelson, E: Dynamical Theories of Brownian Motion. Math. Notes, Princeton Univ. Press, Princeton 1967.zbMATHGoogle Scholar
  13. 13.
    Priouret, P. and M. Yor: Processus de diffusion a valeur dans ℝ et mesures quasi-invariantes sur C(ℝ, ℝ). Astérisque 22–23(1975), 248–290.MathSciNetGoogle Scholar
  14. 14.
    Reed, M. and B. Simon: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York-San Francisco-London 1975.zbMATHGoogle Scholar
  15. 15.
    Simon, B: Functional Integration and Quantum Physics. Academic Press, New York-San Francisco-London 1979.zbMATHGoogle Scholar
  16. 16.
    Stroock, D.W., and S.R.S. Varadhan: Multidimensional Diffusion Processes. Springer Verlag, Berlin-Heidelberg-New York 1979.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Christer Borell
    • 1
    • 2
  1. 1.Department of MathematicsCase Western Reserve UniversityClevelandUSA
  2. 2.Chalmers University of TechnologyGöteborgSweden

Personalised recommendations