Skip to main content

Random subspaces of proportional dimension of finite dimensional normed spaces: Approach through the isoperimetric inequality

Part of the Lecture Notes in Mathematics book series (LNM,volume 1166)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0074700
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   29.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-39736-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   39.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.J. Dilworth, The cotype constant and large Euclidean subspaces of normed spaces, Preprint.

    Google Scholar 

  2. W.J. Davis, V.D. Milman, N. Tomczak-Jaegermann, The distance between certain n-dimensional spaces, Israel J. Math., 39 (1981), 1–15.

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. T. Figiel, J. Lindenstrauss, V.D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53–94.

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. T. Figiel, N. Tomczak-Jeagermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), 155–171.

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. B.S. Kashin, Diameters of some finite dimensional sets and of some classes of smooth functions, IZV. ANSSSR, Ser. Math. 41 (1977), 334–351.

    Google Scholar 

  6. D.R. Lewis, Ellipsoids defined by Banach ideal norms, Mathematika, 26 (1979), 18–29.

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. V.D. Milman, New proof of the theorem of Dvoretzky on sections of convex bodies, Funct. Anal. Appl. 5(1971), 28–37 (Russian); English translation

    MathSciNet  Google Scholar 

  8. V.D. Milman, Almost Euclidean quotient spaces of subspaces of finite dimensional normed space, Proceedings Amer. Math. Soc., to appear. (1985)

    Google Scholar 

  9. V.D. Milman, Volume Approach and Iteration Procedures in Local Theory of Normed Spaces, this volume.

    Google Scholar 

  10. V.D. Milman, G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Springe Lecture Notes, to appear.

    Google Scholar 

  11. S. Szarek, On Kashin almost Euclidean orthogonal decomposition of ℓ n1 , Bull. Acad. Polon. Sci. 26 (1978), 691–694.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Milman, V.D. (1985). Random subspaces of proportional dimension of finite dimensional normed spaces: Approach through the isoperimetric inequality. In: Kalton, N.J., Saab, E. (eds) Banach Spaces. Lecture Notes in Mathematics, vol 1166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0074700

Download citation

  • DOI: https://doi.org/10.1007/BFb0074700

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16051-9

  • Online ISBN: 978-3-540-39736-6

  • eBook Packages: Springer Book Archive