This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
S.J. Dilworth, The cotype constant and large Euclidean subspaces of normed spaces, Preprint.
W.J. Davis, V.D. Milman, N. Tomczak-Jaegermann, The distance between certain n-dimensional spaces, Israel J. Math., 39 (1981), 1–15.
T. Figiel, J. Lindenstrauss, V.D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53–94.
T. Figiel, N. Tomczak-Jeagermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), 155–171.
B.S. Kashin, Diameters of some finite dimensional sets and of some classes of smooth functions, IZV. ANSSSR, Ser. Math. 41 (1977), 334–351.
D.R. Lewis, Ellipsoids defined by Banach ideal norms, Mathematika, 26 (1979), 18–29.
V.D. Milman, New proof of the theorem of Dvoretzky on sections of convex bodies, Funct. Anal. Appl. 5(1971), 28–37 (Russian); English translation
V.D. Milman, Almost Euclidean quotient spaces of subspaces of finite dimensional normed space, Proceedings Amer. Math. Soc., to appear. (1985)
V.D. Milman, Volume Approach and Iteration Procedures in Local Theory of Normed Spaces, this volume.
V.D. Milman, G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Springe Lecture Notes, to appear.
S. Szarek, On Kashin almost Euclidean orthogonal decomposition of ℓ n1 , Bull. Acad. Polon. Sci. 26 (1978), 691–694.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1985 Springer-Verlag
About this paper
Cite this paper
Milman, V.D. (1985). Random subspaces of proportional dimension of finite dimensional normed spaces: Approach through the isoperimetric inequality. In: Kalton, N.J., Saab, E. (eds) Banach Spaces. Lecture Notes in Mathematics, vol 1166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0074700
Download citation
DOI: https://doi.org/10.1007/BFb0074700
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-16051-9
Online ISBN: 978-3-540-39736-6
eBook Packages: Springer Book Archive