Completely integrable systems of KdV-type related to isospectral periodic regular difference operators

  • P. F. Dhooghe
V. Non-Linear Systems, Integrability And Foliations
Part of the Lecture Notes in Mathematics book series (LNM, volume 1139)


Riemann Surface Momentum Operator Inverse Limit Jacobi Field Hamiltonian Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Adler, P. van Moerbeke, Advances in Math. 38, p. 267 and p. 318, 1980CrossRefGoogle Scholar
  2. [2]
    I.V. Cherednik, Physica 3D, 1, p. 306, 1981Google Scholar
  3. [3]
    D.V. Chudnovsky, G.V. Chudnovsky, Z. Physik C. 5, p. 55, 1980MathSciNetCrossRefGoogle Scholar
  4. [4]
    P. Dhooge, Bäcklund equations on Kac-Moody Lie algebras and integrable systems, preprintGoogle Scholar
  5. [5]
    V.G. Drinfel'd, V.V. Sokolov, Dokl.Akad.Nauk. SSSR, 258,p. 11, 1981MathSciNetGoogle Scholar
  6. [6]
    B.A. Dubrovin, Russian Math. Surveys, 36;2, p. 11, 1981MathSciNetCrossRefGoogle Scholar
  7. [7]
    P. Forgacs, Z. Horvath, L. Palla, in "Monopoles in Quantum Field Theory", Ed. N.S. Craigie, P. Goddard, W. Nahm, p. 21, 1981Google Scholar
  8. [8]
    B.A. Kupershmidt, G. Wilson, Inv. Math. 62, p. 403, 1981MathSciNetCrossRefGoogle Scholar
  9. [9]
    H.P. McKean, P. van Moerbeke, Inv. Math. 30, p. 217, 1975CrossRefGoogle Scholar
  10. [10]
    P. van Moerbeke, D. Mumford, Acta Math., Vol. 143, p. 93, 1979MathSciNetCrossRefGoogle Scholar
  11. [11]
    G. Wilson, Ergod. Th. and Dyn. Syst. 1, p. 361, 1981.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • P. F. Dhooghe
    • 1
  1. 1.Dept. MathematicsKath. Universiteit LeuvenBelgium

Personalised recommendations