Advertisement

The energy momentum mapping of the lagrange top

  • R. Cushman
  • H. Knörrer
II. Momentum Mappings And Invariants
Part of the Lecture Notes in Mathematics book series (LNM, volume 1139)

Keywords

Double Zero Critical Orbit Reduce Phase Space Discriminant Locus Tangent Sphere Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arnold, V., Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978CrossRefzbMATHGoogle Scholar
  2. [2]
    Goldstein, H., Classical mechanics, 1st ed., Addison Wesley, Reading, Mass. 1959zbMATHGoogle Scholar
  3. [3]
    Ratiu, T. and van Moerbeke, P., The Lagrange rigid body motion, Ann.Inst.Fourier, Grenoble 32 (1982), 211–234MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Cushman, R., Normal form for Hamiltonian vector fields with periodic flow, preprint II 255, Rijksuniversiteit Utrecht, 1982Google Scholar
  5. [5]
    Jacob, A., Invariant manifolds in the motion of a rigid body about a point, Rev.Roum.Math. Pure et. Appl. 16 (1971), 1497–1521MathSciNetGoogle Scholar
  6. [6]
    Duistermaat, J.J., On global action angle coordinates, Comm.Pure Appl.Math. 33 (1980), 687–706MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Cushman, R., Geometry of the energy momentum mapping of the spherical pendulum, Centrum voor Wiskunde en Informatica Newsletter 1 (1983), 4–18MathSciNetGoogle Scholar
  8. [8]
    Smale, S., Topology and Mechanics I, Inv.Math. 10 (1970), 305–331MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Holmes, Ph., Marsden, J., Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups, Indiana University, Math. Journ. 32 (1983), 273–309.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • R. Cushman
    • 1
  • H. Knörrer
    • 2
  1. 1.Mathematics InstituteRijksuniversiteit UtrechtUtrechtthe Netherlands
  2. 2.Mathematisches InstitutUniversität BonnBonnGermany

Personalised recommendations