Advertisement

Indecomposable finite dimensional representations of the poincare group and associated fields

  • Stephen M. Paneitz
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1139)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.E. Segal, "Mathematical Cosmology and Extragalactic Astronomy," Academic Press, New York, 1976.Google Scholar
  2. 2.
    I.E. Segal, Comment on paper of L. Wormald, J. Rel. Grav., in press.Google Scholar
  3. 3.
    I.E. Segal, A class of operator algebras determined by groups, Duke Math. J. 18 (1951), pp. 221–265.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S.M. Paneitz and I.E. Segal, Analysis in space-time bundles, Parts I and II, J. Func. Anal. 47 (1982) pp. 78–142 and 49 (1982) pp. 335–414; S.M. Paneitz, Part III, J. Func. Anal., in press.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    I.E. Segal, Covariant Chronogeometry and Extreme Distances III, Int. J. Th. Phys. 21 (1982), pp. 851–869.CrossRefGoogle Scholar
  6. 6.
    I.E. Segal, Chronometric cosmology and fundamental fermions, Proc. Nat. Acad. Sci. USA 79 (December 1982), pp. 7961–2.MathSciNetCrossRefGoogle Scholar
  7. 7.
    S.M. Paneitz, All linear representations of the Poincare group up to dimension 8, Ann. Inst. H. Poincare (Th. Phys.), in press.Google Scholar
  8. 8.
    G. Mack and A. Salam, Finite-component field representations of the conformal group, Ann. Phys. 53 (1969), pp. 174–202.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Stephen M. Paneitz
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations