The Milnor ring of a global field

  • H. Bass
  • J. Tate
K2 of Fields Via Symbols
Part of the Lecture Notes in Mathematics book series (LNM, volume 342)


Exact Sequence Prime Ideal Versus Versus Versus Function Field Number Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bass, K2 of global fields, AMS Taped Lecture, (Cambridge, Mass., Oct. 1969).Google Scholar
  2. 2.
    H. Bass, K2 des corps globaux (d'apres Tate, Garland, ...) Sem. Bourbaki no 394, (juin 1971).Google Scholar
  3. 3.
    J. Coates, On K2 and some classical conjectures in algebraic number theory, Ann. of Math., 95(1972), 99–116.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    K. Dennis, K2 and the stable range condition (preprint).Google Scholar
  5. 5.
    H. Garland, A finiteness theorem for K2 of a number field, Ann. Math.Google Scholar
  6. 6.
    S. Lang, Algebraic number theory, Addison Wesley, (1970).Google Scholar
  7. 7.
    S. Lichtenbaum, On the valuesof zeta and L-functions I, (to appear in Ann. of Math.)Google Scholar
  8. 8.
    J. Milnor, Algebraic K-theory and quadratic forms, Inventiones Math. (1970) 318–344.Google Scholar
  9. 9.
    J. Milnor, Introduction to algebraic K-theory, Ann. Math. Studies, Princeton (1971).Google Scholar
  10. 10.
    C. Moore, Group extensions of p-adic and adelic linear groups, Publ. I.H.E.S. 35 (1969) 5–74.Google Scholar
  11. 11.
    J. P. Serre, Groupes algébriques et corps de classes, Hermann (1959).Google Scholar
  12. 12.
    T. A. Springer, A remark on the Milnor ring (preprint) UtrechtGoogle Scholar
  13. 13.
    J. Tate, K2 of global fields, AMS Taped Lecture (Cambridge, Mass., Oct., 1969).Google Scholar
  14. 14.
    J. Tate, Symbols in arithmetic (hour address) Proc. Internat. Cong. Math., Nice (1970).Google Scholar
  15. 15.
    A. Weil, Basic number theory, Springer-Verlag (1967).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • H. Bass
  • J. Tate

There are no affiliations available

Personalised recommendations