Advertisement

Decomposition formula of laurent extension in algebraic K-theory and the role of codimension 1 submanifold in topology

  • Wu-chung Hsiang
The Functor K2 of Milnor
Part of the Lecture Notes in Mathematics book series (LNM, volume 342)

Keywords

Chain Complex Geometric Interpretation Closed Manifold Grothendieck Group Homology Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Bass: Algebraic K-theory, Benjamin (1968) New York.Google Scholar
  2. [2]
    H. Bass, A. Heller and R. Swan: The Whitehead group of a polynomial extension, Publ. I.H.E.S. No. 22 (1964) 61–70.Google Scholar
  3. [3]
    H. Bass and M.P. Murthy: Grothendieck group and Picard groups of abelian group rings, Ann. of Math. Vol. 86 (1967) 16–73.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    E. Eilenberg and N. Steenrod: Foundations of Algebraic topology, Princeton Math. Series, Princeton Univ. Press, Princeton, N. J. 1952.zbMATHGoogle Scholar
  5. [5]
    R. D. Edwards and R. Kirby: Deformations of spaces of imbeddings. Ann. of Math. Vol. 93 (1971) 63–88.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    F. T. Farrell and W. C Hsiang: A Formula for K1Rα[T], Proc. of Sym. in Pure Math. AMS Vol. XVII (1970) 192–218.MathSciNetCrossRefGoogle Scholar
  7. [7]
    F. T. Farrell and W. C. Hsiang: Manifold with π1=G xα T (to appear in Amer. J. Math.).Google Scholar
  8. [8]
    F. T. Farrell and W. C. Hsiang: H: cobordant manifolds are not necessarily homeomorphic, Bull.AMS vol. 73 (1967) 741–744.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    S. Gersten: Thesis, Cambridge University, 1965.Google Scholar
  10. [10]
    S. Gersten: Homotopy theory of rings and algebraic K-theory, Bull.AMS Vol. 77 (1971) 117–119.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    A. Hatcher and J. Wagoner: Pseudo-isotopies on non-simply connected manifolds and the functor K2. (To appear).Google Scholar
  12. [12]
    A. Hatcher: The second obstruction for pseudo-isotopies. (To appear).Google Scholar
  13. [13]
    J. W. Milnor: Introduction to algebraic K-theory, Ann. of Math. Studies, Princeton University Press 1971, Princeton, N. J.zbMATHGoogle Scholar
  14. [14]
    J. W. Milnor: Whitehead torsion, Bull. AMS Vol. 72 (1966) 358–426.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    J. Milnor: Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. Vol. 74 (1961) 575–590.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    D. Quillen: The K-theory associated to a finite field, Ann. of Math. (To appear).Google Scholar
  17. [17]
    D. Quillen: (To appear).Google Scholar
  18. [18]
    L. Siebenmann: Torsion invariants for pseudo-isotopies on closed manifolds, Notices AMS Vol. 14 (1967) 942.Google Scholar
  19. [19]
    L. Siebenmann: A total Whitehead torsion obstruction to fibring over the circle. Comment. Math. Helv. Vol. 45 (1970) 1–48.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    J. Stallings: On infinite processes leading to differentiability in the complement of a point, Differential and Combinatorial Topology, (A Sym. in honor of M. Morse), Princeton Univ. Press, Princeton, N. J. 245–254.Google Scholar
  21. [21]
    J. Wagoner: On K2 of the Laurent polynomial ring, Amer. J. Math. Vol. 93 (1972) 123–138.MathSciNetCrossRefGoogle Scholar
  22. [22]
    C. T. C. Wall: Finiteness conditions for CW-complexes, Ann. of Math. Vol. 81 (1965) 56–69.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Wu-chung Hsiang
    • 1
  1. 1.Fine Hall Princeton UniversityPrinceton

Personalised recommendations