Variations on Milnor's computation of K2Z

  • J. E. Humphreys
The Functor K2 of Milnor
Part of the Lecture Notes in Mathematics book series (LNM, volume 342)


Commutative Ring Chevalley Group Unipotent Radical Algebraic Integer Rational Integer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Birman, On Siegel's modular group, Math. Ann. 191 (1971), 59–68.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    W. Magnus, Über n-dimensionale Gittertransformationen, Acta Math. 64 (1934), 353–367.MathSciNetCrossRefGoogle Scholar
  3. 3.
    H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Scient. Éc. Norm. Sup. (4) 2 (1969), 1–62.zbMATHGoogle Scholar
  4. 4.
    J. Milnor, Introduction to Algebraic K-theory, Annals of Math. Studies No. 72, Princeton: Princeton Univ. Press, 1971.zbMATHGoogle Scholar
  5. 5.
    M. Stein, Generators, relations, and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965–1004.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    W. P. Wardlaw, Defining Relations for certain integrally parametrized Chevalley groups, Pacific J. Math. 40 (1972), 235–250.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    W. P. Wardlaw, Defining relations for most integrally parametrized Chevalley groups, preprint.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • J. E. Humphreys

There are no affiliations available

Personalised recommendations