About the equality between the p-module and the p-capacity in Rn

  • Petru Caraman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1039)


Boundary Component Quasiconformal Mapping Admissible Function Preceding Lemma Extremal Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ACEBBE, B.B.: Об одном свойстве модуля, Докл. Акад. Наук СССР 200 (1971), 513–514.Google Scholar
  2. [2]
    BAGBY, T.: Ph.D. thesis, Harvard Univ., Cambridge, Massachusets 1966.Google Scholar
  3. [3]
    BARBU, V. and T. PRECUPANU: Convexity and optimization in Banach spaces, Edit. Acad. Bucereşti România and Sijthoff & Noordhoff, International Publishers 1978, 316 pp.Google Scholar
  4. [4]
    CARAMAN, P.: Quasiconformality and extremal length, Proc. 1st Romanian-Finnish Seminar on Teichmüller spaces and quasiconformal mappings, Braşow 1969, Edit. Acad. Bucureşti România 1971, pp. 111–145.Google Scholar
  5. [5]
    —: n-dimensional quasiconformal mappings, Edit. Acad. Bucureşti România and Abacus Press, Tunbridge Wells, Kent, England 1974, 553 pp.zbMATHGoogle Scholar
  6. [6]
    —: Quasiconformality and boundary correspondence, Rev. Anal. Numer. Théorie Approximation 5(1976), 117–126 pp.Google Scholar
  7. [7]
    —: p-capacity and p-modulus, Symposia Math. 18(1976), 455–484 pp.Google Scholar
  8. [8]
    —: Estimate of an exceptional set for quasiconformal mappings in Rn, Komplexe Analysis und ihre Anwendung auf partielle Differentialgleichungen, Teil 3, Martin Luther Univ. Halle-Wittenberg Wissenschaftliche Beiträge 1980/41 (M18), Halle (Saale) 1980, pp. 210–221.Google Scholar
  9. [9]
    —: Le p-module et la p-capacité du cylindre, C. R. Acad. Sci. Paris 290(1980), 171–219.MathSciNetGoogle Scholar
  10. [10]
    FUGLEDE, B.: Extremal length and functional completion, Acta Math. 9(1957), 171–219.MathSciNetCrossRefGoogle Scholar
  11. [11]
    GEHRING, F.: Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103(1962), 353–393.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    —: Extremal length definition for conformal capacity in space, Michigan Math. J. 9 (1962), 137–150.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    — and J. VÄISÄLÄ: The coefficient of quasiconformality of domains in space, Acta Math. 114(1965), 1–70.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    HERSCH, J.: Longueurs extremales dans l'espace, résistence électrique et capacité, C. R. Acad. Sci. Paris 238(1954), 1693–1641.MathSciNetGoogle Scholar
  15. [15]
    HESSE, J.: Modulus and capacity, Ph. D. thesis, Univ. of Michigan, Ann Arbor, Michigan 1972, 117 pp.Google Scholar
  16. [16]
    —: A p-extremal length and a p-capacity equality, Ark. Mat. 13(1975), 131–144.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    КРИВОВ, В.В.: Некоторые свойства модулей в пространстве, Докл. Акад. Наук СССР 154 (1964), 510–515.Google Scholar
  18. [18]
    NÄKKI, R.: Boundary behavior of quasiconformal mappings in n-space, Ann. Acad. Sci. Fenn. Ser. A I Math. 484(1970), 50 pp.Google Scholar
  19. [19]
    RADO, T. and P.V. REICHELDERFER: Continuous transformations in analysis, Springer, Berlin-Heidelberg-New York 1955, 442 pp.zbMATHCrossRefGoogle Scholar
  20. [20]
    REIMANN, H.M.: Über harmonische Kapazität und quasikonforme Abbildungen im Raum, Comment, Math. Helv. 44(1969), 284–304.MathSciNetzbMATHGoogle Scholar
  21. [21]
    SAKS, S.: Theory of the integral, Second revised edition with two Notes by Prof.Stefan Banach. Hafner Publishing Company, New York 1955, 347 pp.Google Scholar
  22. [22]
    СЫЧЭВ А.В.: О некоторых свойствах модулеЧi, Сибирский Мат. ж. 6 (1965), 1108–1119.Google Scholar
  23. [23]
    VÄISÄLÄ, J.: On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I Math. 298 (1961), 36 pp.Google Scholar
  24. [24]
    ZIEMER, W.: Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126 (1967), 460–473.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    —: Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43–51.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    —: Extremal length as a capacity, Michigan Math. J. 17 (1970), 117–123.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    ЖОРИЧ, В.А.: Об угловых граничных эначениях кваэиконформных отображений щара, Докл. Акад. Наук СССР 177 (1967), 771–775.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Petru Caraman
    • 1
  1. 1.Institute of MathematicsUniversity "Al.I.Cuza"IaşiRomânia

Personalised recommendations