Advertisement

Distributions sphériques invariantes sur l'espace symétrique semi-simple et son c-dual

  • Shigeru Sano
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1243)

Keywords

Symmetric Space Plancherel Formula Defini Tion Nous Allons Restricted Root System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    M.F. Atiyah, Characters of semi-simple Lie groups (lectures given in Oxford), Mathematical Institute, Oxford, 1976.Google Scholar
  2. [2]
    J. Faraut, Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl., 58(1979), 369–444.MathSciNetzbMATHGoogle Scholar
  3. [3]
    J.Faraut, Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques, Analyse Harmonique, (1983), 315–446.Google Scholar
  4. [4]
    J.Faraut, Analyse harmonique et fonctions speciales, Ecole d'été d'analyse harmonique de tunis, (1984).Google Scholar
  5. [5]
    M. Flensted-Jensen, Discrete series for semi-simple symmetric spaces, ANN. of Math., 111(1980), 253–311.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S.Helgason, Differential Geometry and symmetric spaces, Academic Press, 1962.Google Scholar
  7. [7]
    S.Helgason, Analysis on Lie groups and homogeneous spaces, Regional Conference series in Mathematics, Amer. Math. Soc. 14, 1972.Google Scholar
  8. [8]
    Harish-Chandra, The characters of semi-simple Lie groups, Trans. Amer. Math. Soc., 83(1956), 98–163.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Harish-Chandra, Some results on an invariant integral on a semi-simple Lie algebra, Ann. of Math., 80(1964), 551–593.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    T. Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups I, Japan. J. Math., 39(1970), 1–68.MathSciNetzbMATHGoogle Scholar
  11. [11]
    T. Hirai, The Plancherel formula for SU(p,q), J. Math. Soc. Japan, 22(1970), 134–179.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    T. Hirai, Invariant eigendistributions of Laplace operators on real simple Lie groups II, Japan.J.Math.New series, 2 (1976), 27–89.MathSciNetzbMATHGoogle Scholar
  13. [13]
    M. Kashiwara, The Riemann-Hilbert Problem for Holonomic Systems, Publ.RIMS,Kyoto Univ., 20(1984), 319–365.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    O. Loos, Symmetric spaces, Vols.I–II, Benjamin, New York, 1969.Google Scholar
  15. [15]
    T. Oshima-T. Matsuki, Orbits on affine symmetric spaces under the action of the isotropic subgroup, J.Math.Soc.Japan, 32 (1980),399–414.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    T. Oshima-T. Matsuki, A complete description of discrete series for semi-simple symmetric spaces, Advanced studies in Pure Math., 4(1984) 331–390.MathSciNetzbMATHGoogle Scholar
  17. [17]
    T. Oshima-J. Sekiguchi, Eigenspaces of invariant differential Operators on an affine symmetric space, Invent. Math., 57 (1980), 1–81.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    T. Oshima-J. Sekiguchi, The Restricted Root System of a Semisimple Symmetric Pair, Advanced studies in Pure Math., 4 (1984), 433–497.MathSciNetzbMATHGoogle Scholar
  19. [19]
    S. Sano, Invariant spherical distributions and the Fourier inversion formula on GL(n,ℂ)/GL(n,ℝ), J.Math.Soc.Japan, 36 (1984), 191–219.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Sano-S. Aoki-S. Kato, A Note on Connection Formulas for Invariant Eigendistributions on Certain Semisimple Symmetric Spaces, Bull. of I.V.T., 14-A(1985), 99–108.MathSciNetGoogle Scholar
  21. [21]
    S.Sano-N.Bopp, Distributions sphériques invariantes sur l'espace semi-simple symétrique Gc/GR, preprint.Google Scholar
  22. [22]
    S. Sano-J. Sekiguchi, The Plancherel formula for SL(2,C)/SL(2,R), Sci. Papers College Ged.Ed.Tokyo,30(1980), 93–105.MathSciNetzbMATHGoogle Scholar
  23. [23]
    M. Sugiura, Conjugate classes of Cartan subalgebras in real semi-simple Lie algebras, J.Math.Soc.Japan, 11(1959), 374–434.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M.Sugiura, Unitary representations and harmonic analysis Kodansha, Tokyo, 1975.Google Scholar
  25. [25]
    R. Takahashi, Sur les functions spheriques et la formule de Plancherel dans le groupe hyperbolique, Japan.J.Math., 31 (1961), 55–90.MathSciNetzbMATHGoogle Scholar
  26. [26]
    V.S.Varadarajan, Harmonic Analysis on real reductive groups, Lecture Notes in Math., 576, Springer Verlag, 1977.Google Scholar
  27. [27]
    G.Warner, Harmonic Analysis on semi-simple Lie groups, Vol. 1, 2, Springer Verlag, 1972.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Shigeru Sano
    • 1
    • 2
  1. 1.Université Louis Pasteur de StrasbourgFrance
  2. 2.Département de MathématiqueUniversité de ShokugyokunrenKanagawaJapon

Personalised recommendations