Recurrence relations for Plancherel functions

  • Dale Peterson
  • Michèle Vergne
Part of the Lecture Notes in Mathematics book series (LNM, volume 1243)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bo]
    Bouaziz, A.; Sur les caractères des groupes de Lie réductifs non connexes, to appear in Journal of Functional Analysis.Google Scholar
  2. [Do]
    Dourmashkin, P., A Poisson-Plancherel formula for the universal covering group with Lie algebra of type Bn, Thesis M.I.T. 1984, to appear.Google Scholar
  3. [Du-Ve]
    Duflo, M., Vergne, M., La formule de Plancherel des groupes de Lie semisimples, Preprint 1985.Google Scholar
  4. [Ha-1]
    Harish-Chandra, Discrete series for semi-simple Lie groups I, Acta Math. 113, 1965, 241–318.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Ha-2]
    Harish-Chandra, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math. 104, 1976, 117–201.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [He]
    Herb, R., Discrete series characters and Fourier inversion on semi-simple real Lie groups, TAMS, 277, 1983, 241–261.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Ka-Pe]
    Kac, V., Peterson, D., Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math., Vol. 53, No.2, August 1984, 125–264.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Ve]
    Vergne, M., A Poisson-Plancherel formula for semi-simple Lie groups, Ann. of Math. 115, 1982, 639–666.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Dale Peterson
    • 1
  • Michèle Vergne
    • 2
    • 3
  1. 1.Department of MathematicsM I TCambridgeUSA
  2. 2.CNRSParisFrance
  3. 3.Department of MathematicsM.I.T.CambridgeU.S.A.

Personalised recommendations