Advertisement

Recurrence relations for Plancherel functions

  • Dale Peterson
  • Michèle Vergne
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1243)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Bo]
    Bouaziz, A.; Sur les caractères des groupes de Lie réductifs non connexes, to appear in Journal of Functional Analysis.Google Scholar
  2. [Do]
    Dourmashkin, P., A Poisson-Plancherel formula for the universal covering group with Lie algebra of type Bn, Thesis M.I.T. 1984, to appear.Google Scholar
  3. [Du-Ve]
    Duflo, M., Vergne, M., La formule de Plancherel des groupes de Lie semisimples, Preprint 1985.Google Scholar
  4. [Ha-1]
    Harish-Chandra, Discrete series for semi-simple Lie groups I, Acta Math. 113, 1965, 241–318.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Ha-2]
    Harish-Chandra, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math. 104, 1976, 117–201.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [He]
    Herb, R., Discrete series characters and Fourier inversion on semi-simple real Lie groups, TAMS, 277, 1983, 241–261.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Ka-Pe]
    Kac, V., Peterson, D., Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math., Vol. 53, No.2, August 1984, 125–264.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Ve]
    Vergne, M., A Poisson-Plancherel formula for semi-simple Lie groups, Ann. of Math. 115, 1982, 639–666.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Dale Peterson
    • 1
  • Michèle Vergne
    • 2
    • 3
  1. 1.Department of MathematicsM I TCambridgeUSA
  2. 2.CNRSParisFrance
  3. 3.Department of MathematicsM.I.T.CambridgeU.S.A.

Personalised recommendations