Advertisement

On the cyclicity of vectors associated with Duflo involutions

  • Anthony Joseph
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1243)

Keywords

Verma Module Double Cell Grothendieck Group Projective Functor Positive Rational Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Barbasch and D.A. Vogan (to appear)Google Scholar
  2. [2]
    J.N. Bernstein and S.I. Gelfand (1980) Tensor products of finite and infinite dimensional representations of semisimple Lie algebras. Compos Math 41:245–285MathSciNetzbMATHGoogle Scholar
  3. [3]
    J. Dixmier (1974) Algèbres enveloppantes. Cahiers Scientifiques, XXXVII, Gauthier-Villars, ParisGoogle Scholar
  4. [4]
    O. Gabber and A. Joseph (1981) The Bernstein-Gelfand-Gelfand resolution and the Duflo sum formula. Compos Math 43:107–131MathSciNetzbMATHGoogle Scholar
  5. [5]
    O. Gabber and A. Joseph (1981) Towards the Kazhdan-Lusztig conjecture. Ann Ec Norm Sup 14:261–302MathSciNetzbMATHGoogle Scholar
  6. [6]
    J.C. Jantzen (1979) Moduln mit einem höchsten Gewicht. Springer, Berlin Heidelberg New York, LN 750zbMATHGoogle Scholar
  7. [7]
    A. Joseph (1979) Dixmier's problem for Verma and principal series submodules. J Lond Math Soc 20:193–204CrossRefzbMATHGoogle Scholar
  8. [8]
    A. Joseph (1979) W-module structure in the primitive spectrum of the enveloping algebra of a semi-simple Lie algebra. Springer, Berlin Heidelberg New York, LN 728, pp 116–135Google Scholar
  9. [9]
    A. Joseph (1980) Goldie rank in the enveloping algebra of a semisimple Lie algebra, I, II, III. J Algebra 65:269–283, 284–306; J Algebra 73 (1981):295–326MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Joseph (1982) The Enright functor in the Bernstein-Gelfand-Gelfand category o. Invent Math 67:423–445MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Joseph (1981) Completion functors in the o category. Springer, Berlin Heidelberg New York, LN 1020, ppGoogle Scholar
  12. [12]
    A. Joseph (1984) On the variety of a highest weight module. J Algebra 88:238–278MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Joseph, Three topics in enveloping algebras. In: Proceedings Durham Symposium 1983 (to appear)Google Scholar
  14. [14]
    D. Kazhdan and G. Lusztig (1979) Representations of Coxeter groups and Hecke algebras. Invent Math 53:165–184MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    G. Lusztig (1981) On a theorem of Benson and Curtis. J Algebra 71:490–498MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    G. Lusztig (1984) Characters of reductive groups over a finite field. Princeton University Press, New JerseyCrossRefzbMATHGoogle Scholar
  17. [17]
    G. Lusztig (1985) Cells in affine Weyl groups. Advanced Studies in Pure Math., Vol. 6, Kinokuniya and North HollandGoogle Scholar
  18. [18]
    G. Lusztig (1986) Cells in affine Weyl groups II. Preprint, M.I.T.Google Scholar
  19. [19]
    W. Soergel (1985) Über den "Erweiterungs-Abschluß" der Kategorie o in der Kategorie aller Moduln über einer halbeinfachen Liealgebra. Diplomarbeit im Fach Mathematik an der Universität BonnGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Anthony Joseph

There are no affiliations available

Personalised recommendations