Advertisement

Irreducible unitary representations of some groups of real rank two

  • M. W. Baldoni-Silva
  • A. W. Knapp
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1243)

Keywords

Conjugacy Class Weyl Group Irreducible Unitary Representation Cartan Subgroup Positive System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Angelopoulos, E., Sur les représentations unitaires irréductibles de SO0(p,2), C. R. Acad. Sci. Paris Ser. I 292 (1981), 469–471.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Baldoni Silva, M. W., and D. Barbasch, The unitary spectrum for real rank one groups, Invent. Math. 72 (1983), 27–55.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Baldoni-Silva, M. W., and A. W. Knapp, Indefinite intertwining operators, Proc. Nat. Acad. Sci. USA 81 (1984), 1272–1275.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Baldoni-Silva, M. W., and A. W. Knapp, Indefinite intertwining operators II, preprint, 1984.Google Scholar
  5. [5]
    Baldoni-Silva, M. W., and A. W. Knapp, Unitary representations induced from maximal parabolic subgroups, preprint, 1985.Google Scholar
  6. [6]
    Duflo, M., Représentations unitaires irréductibles des groupes simples complexes de rang deux, Bull. Soc. Math. France 107 (1979), 55–96.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Enright, T. J., and N. R. Wallach, Notes on homological algebra and representations of Lie algebras, Duke Math. J. 47 (1980), 1–15.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Knapp, A. W., Weyl group of a cuspidal parabolic, Ann. Sci. Ecole Norm. Sup. 8 (1975), 275–294.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Knapp, A. W., Commutativity of intertwining operators for semisimple groups, Compositio Math. 46 (1982), 33–84.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Knapp, A. W., Minimal K-type formula, "Non Commutative Harmonic Analysis and Lie Groups," Springer-Verlag Lecture Notes in Math. 1020 (1983), 107–118.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Knapp, A. W., Representation Theory of Semisimple Groups: An Overview Based on Examples, Princeton University Press, to appear.Google Scholar
  12. [12]
    Knapp, A. W., and B. Speh, Status of classification of irreducible unitary representations, "Harmonic Analysis," Springer-Verlag Lecture Notes in Math. 908 (1982), 1–38.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Knapp, A. W., and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. 93 (1971), 489–578.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Knapp, A. W., and G. Zuckerman, Classification theorems for representations of semisimple Lie groups, "Non-Commutative Harmonic Analysis," Springer-Verlag Lecture Notes in Math. 587 (1977), 138–159.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Knapp, A. W., and G. J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. 116 (1982), 389–501. (See also 119 (1984), 639.)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Langlands, R. P., On the classification of irreducible representations of real algebraic groups, mimeographed notes, Institute for Advanced Study, 1973.Google Scholar
  17. [17]
    Miličić, D., Asymptotic behaviour of matrix coefficients of the discrete series, Duke Math. J. 44 (1977), 59–88.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Tsuchikawa, M., On the representations of SL(3,C), III, Proc. Japan Acad. 44 (1968), 130–132.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Vahutinskii, I. J., Unitary representations of GL(3,R), Math. Sbornik 75 (117) (1968), 303–320 (Russian).MathSciNetGoogle Scholar
  20. [20]
    Vogan, D. A., The algebraic structure of the representation of semisimple groups I, Ann. of Math. 109 (1979), 1–60.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Vogan, D. A., Representations of Real Reductive Lie Groups, Birkhäuser, Boston, 1981.zbMATHGoogle Scholar
  22. [22]
    Vogan, D. A., Unitarizability of certain series of representations, Ann. of Math. 120 (1984), 141–187.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Vogan, D. A., The unitary dual of GL(n) over an archimedean field, preprint, 1985.Google Scholar
  24. [24]
    Vogan, D. A., and G. J. Zuckerman, Unitary representations with non-zero cohomology, Compositio Math. 53 (1984), 51–90.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • M. W. Baldoni-Silva
    • 1
    • 2
  • A. W. Knapp
    • 1
    • 2
  1. 1.Dipartimento di MatematicaUniversità degli Studi di TrentoPovo (TN)Italy
  2. 2.Department of MathematicsCornell UniversityIthacaU.S.A.

Personalised recommendations