Advertisement

Regularite relative au noyau de Poisson

  • Mohamed Hmissi
Conference paper
  • 129 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1235)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    ANCONA A.-Principe de Harnak à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien. Ann. Inst. Fourier 28.4 (1978) (pages 169–213)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    BAUER H.-Harmonische Räume und ihre Potentialtheorie. Lectures Notes 22. Berlin-Heidelberg-New York, Springer 1966.zbMATHGoogle Scholar
  3. [3]
    BAUMANN A.-Poisson Formeln für harmonische Kerne. Journal für die reine und angewandte Mathematik. Band 336. Walter de Gruyter, Berlin New York 1982 (pages 190–200).MathSciNetzbMATHGoogle Scholar
  4. [4]
    CONSTANTINESCU C.-Hermonic spaces, Absorbents sets and Balayage. Revue Roumaine de mathématiques pures et appliquées 11 (1966), (pages 887–910).MathSciNetzbMATHGoogle Scholar
  5. [5]
    CONSTANTINESCU C. CORNEA A.-Potential theory on harmonic spaces. Berlin-Heidelberg-New York, Springer 1972.CrossRefzbMATHGoogle Scholar
  6. [6]
    FRIEDMANN A.-Parabolic Equations of the second order. Trans. Ann. Math. Society 93 (1959) (pages 509–530).CrossRefGoogle Scholar
  7. [7]
    JANSSEN K.-On the existence of a Green function for harmonic spaces. Math. Ann. Springer-Verlag (1974) (pages 295–303).Google Scholar
  8. [8]
    Maagli H.-Thèse de 3ème cycle. Faculté des Sciences de Tunis (1984).Google Scholar
  9. [9]
    SIEVEKING M.-Elliptic Boundary value problems and Poisson kernel 1982/83. Non publié.Google Scholar
  10. [10]
    SIEVEKING M.-Uber die Greensche Function in der Potential theorie. Seminar für angewandte Mathematik. Non publié.Univ. de Zürich.Google Scholar
  11. [11]
    TAYLOR J.C.-Duality and the Martin compactification. Ann. Inst. Fourier 22.3 (1972) (pages 95–130).MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    TAYLOR J.C.-The Margin compactification in Axiomatic Potential theory. Proceedings of the Third Prague Topological Symposium 1971. ACADEMIA. Publishing House of the Czechoslovak Academy of Science Prague. ACADEMIC PRESS. New-York and London 1972, (pages 427–436).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Mohamed Hmissi
    • 1
  1. 1.Département de MathématiquesFaculté des Sciences de TunisTunisTunisie

Personalised recommendations