Skip to main content

The generalized Schur algorithm for the superfast solution of Toeplitz systems

  • Miscellanea
  • Conference paper
  • First Online:
Rational Approximation and its Applications in Mathematics and Physics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1237))

Abstract

We review the connections between fast, O(n 2), Toeplitz solvers and the classical theory of Szegö polynomials and Schur's algorithm. We then give a concise classically motivated presentation of the superfast, O(nlog 22 n), Toeplitz solver that has recently been introduced independently by deHoog and Musicus. In particular, we describe this algorithm in terms of a generalization of Schur's classical algorithm.

Research supported in part by the National Science Foundation under grant DMS-8404980 and by the Seminar fĂĽr Angewandte Mathematik of the ETH-ZĂĽrich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. I. Akhiezer, The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965.

    MATH  Google Scholar 

  2. G. S. Ammar and W. B. Gragg, Implementation and Use of the Generalized Schur Algorithm, in Computational and Combinatorial Methods in Systems Theory, C. I. Byrnes and A. Lindquist, eds., North-Holland, Amsterdam, 1986, pp. 265–280.

    Google Scholar 

  3. B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ, 1979.

    MATH  Google Scholar 

  4. R. R. Bitmead and B. D. O. Anderson, Asymptotically Fast Solution of Toeplitz and Related Systems of Linear Equations, Linear Algebra Appl., 34 (1980), 103–116.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. P. Brent, F. G. Gustavson and D. Y. Y. Yun, Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants, J. Algorithms, 1 (1980) 259–295.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. R. Bunch, Stability of Methods for Solving Toeplitz Systems of Equations, SIAM J. Sci. Statist. Comput., 6 (1985), 349–364.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. L. Chebyshev, Sur l'Interpolation par la Methode des Moindres Carrés, Mém. Acad. Impér. Sci. St. Pétersbourg, 1 (1859), 1–24.

    Google Scholar 

  8. G. Cybenko, Error Analysis of some Signal Processing Algorithms, Ph. D. Thesis, Princeton Univ., Princeton, NJ, 1978.

    Google Scholar 

  9. G. Cybenko, The Numerical Stability of the Levinson-Durbin Algoritm for Toeplitz Systems of Equations, SIAM J. Sci. Statist. Comput., 1 (1980), 303–319.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. de Hoog, On the Solution of Toeplitz Systems of Equations, Lin. Algebra Appl., to appear.

    Google Scholar 

  11. J. Durbin, The Fitting of Time-Series Models, Rev. Inst. Internat. Statist., 28 (1959), 229–249.

    Google Scholar 

  12. W. Gautschi, On Generating Orthogonal Polynomials, SIAM J. Sci. Statist. Comput., 3 (1982), 289–317.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. C. Gohberg and I. A. Fel'dman, Convolution Equations and Projection Methods for their Solution, American Mathematical Society, Providence, RI, 1974.

    MATH  Google Scholar 

  14. G. H. Golub and C. F. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore, MD, 1984.

    MATH  Google Scholar 

  15. W. B. Gragg, The Pade' Table and its Relation to Certain Algorithms of Numerical Analysis, SIAM Rev., 14 (1972), 1–62.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. B. Gragg, Positive definite Toeplitz Matrices, the Arnoldi Process for Isometric Operators, and Gaussian Quadrature on the Unit Circle (in Russian), in Numerical Methods in Linear Algebra (E.S. Nikolaev editor), Moscow University Press, 1982, 16–32.

    Google Scholar 

  17. W. B. Gragg, The QR Algorithm for Unitary Hessenberg Matrices, J. Comput. Appl. Math., to appear.

    Google Scholar 

  18. W. B. Gragg, F. G. Gustavson, D. D. Warner and D. Y. Y. Yun, On Fast Computation of Superdiagonal Pade'Fractions, Math. Programming Stud., 18 (1982), 39–42.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. R. Jain, An Efficient Algorithm for a Large Toeplitz Set of Linear Equations, IEEE Trans. Acoust. Speech Signal Process., 27 (1979), 612–615.

    Article  MathSciNet  Google Scholar 

  20. T. Kailath, A View of Three Decades of Linear Filtering Theory, IEEE Trans. Inform. Theory, 20 (1974), 146–181.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Levinson, The Wiener RMS (Root-Mean-Square) Error Criterion in Filter Design and Prediction, J. Math. Phys., 25 (1947), 261–278.

    Article  MathSciNet  Google Scholar 

  22. B. R. Musicus, Levinson and Fast Choleski Algorithms for Toeplitz and Almost Toeplitz Matrices, Report, Res. Lab. of Electronics, M.I.T., 1984.

    Google Scholar 

  23. A. V. Oppenheim, Applications of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1978.

    Google Scholar 

  24. E. Parzen, Autoregressive Spectral Estimation, in Time Series in the Frequency Domain, D.R. Brillinger and P.R. Krishnaiah, eds., North-Holland, Amsterdam, 1983.

    Google Scholar 

  25. I. Schur, Uber Potenzreihen, die in Innern des Einheitskrises Beschränkt Sind, J. Reine Angew. Math., 147 (1917), 205–232.

    MathSciNet  Google Scholar 

  26. G. Szegö, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1939.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacek Gilewicz Maciej Pindor Wojciech Siemaszko

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Ammar, G.S., Gragg, W.B. (1987). The generalized Schur algorithm for the superfast solution of Toeplitz systems. In: Gilewicz, J., Pindor, M., Siemaszko, W. (eds) Rational Approximation and its Applications in Mathematics and Physics. Lecture Notes in Mathematics, vol 1237. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0072474

Download citation

  • DOI: https://doi.org/10.1007/BFb0072474

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17212-3

  • Online ISBN: 978-3-540-47412-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics