Advertisement

Fluid Dynamics pp 175-187 | Cite as

Free boundary problems for compressible viscous fluids

  • Alberto Valli
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1047)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Agmon — A. Douglis — L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisying general boundary conditions, II, Comm. Pure Appl. Math., 17 (1964), 35–92.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Rational Mech. Anal., 25 (1967), 40–63.ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J.L. Lions — E. Magenes, Problèmes aux limites non homogènes et applications, vol. 2, Dunod, Paris, 1968.Google Scholar
  4. [4]
    P. Secchi — A. Valli, A free boundary problem for compressible viscous fluids, J. Reine Angew. Math., to appear.Google Scholar
  5. [5]
    J. Serrin, Mathematical principles of classical fluid mechanics, Handbuch der Physik, Bd. VIII/1, Springer-Verlag, Berlin Göttingen Heidelberg, 1959.Google Scholar
  6. [6]
    J. Serrin, On the uniqueness of compressible fluid motions, Arch. Rational Mech. Anal., 3 (1959), 271–288.ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    A. Tani, On the free boundary value problem for compressible viscous fluid motion, J. Math. Kyoto Univ., 21 (1981), 839–859.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J.V. Wehausen — E.V. Laitone, Surface waves, Handbuch der Physik, Bd. IX, 446–778, Springer-Verlag, Berlin Göttingen Heidelberg, 1960.MATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Alberto Valli
    • 1
  1. 1.Dipartimento di MatematicaUniversità di TrentoPovoItaly

Personalised recommendations