Advertisement

Fluid Dynamics pp 139-165 | Cite as

Limites des equations d’un fluide compressible lorsque la compressibilite tend vers zero

  • A. Lagha-Benabdallah
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1047)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. (1).
    EBIN D.: The motion of sslighty compressible fluide vewed as a motion with strong constraining force. Annals of mathematics 105 (1977) 141.200.CrossRefGoogle Scholar
  2. (2).
    FRIEDMAN A.: Partial Differential equation of parabolic type-Prince-Hall, Inc. (1964).Google Scholar
  3. (3).
    ITAYA N.: On the Cauchy problem for the system of fondamental equations describing the movement of compressible viscous fluid-Kodai Math. Sem. Rep. 23 (1971) 60–120.MathSciNetCrossRefMATHGoogle Scholar
  4. (4).
    ITAYA N.: On the initial value problem of the motion of compressible viscous fluid, especially on the problem of uniqueness-J. Math. Kyoto Univ. 16 (1976), 413–427.MathSciNetCrossRefMATHGoogle Scholar
  5. (5).
    ITAYA N.: A survey on the generalized Burger’s equation with a pressure model term-J. Math. Kyoto Univ., 16 (1976) 1–18.MathSciNetCrossRefMATHGoogle Scholar
  6. (6).
    ITAYA N.: A survey of two model equations for compressible viscous fluid (to appear).Google Scholar
  7. (7).
    KANEL Ya.I: On a model system of equations for one dimensional gas motion-Diff. eq. (in Russian) 8 (1968) 21–734.Google Scholar
  8. (8).
    KATO T.: Linear evolution equations of hyperbolic type-J. Fac. Sci. Univ. Tokyo, 17 (1970) 241–258.MathSciNetMATHGoogle Scholar
  9. (9).
    KAZHYKOV A.V.: Sur la solubilité globale du problème monodimensionnel aux valeurs initiales limitées pour les équations du gaz visqueux et calorifique-CR Accord Sci. Paris 284 (1977) Ser. A 317.ADSGoogle Scholar
  10. (10).
    KAZHYKOV A.V. and SELUKNIN V.V.: Unique global solution in times of initial boundary value problems for one dimensional equations of a viscous gas P. M. M. Vol. 41, no 2 (1977) Novosibirsk.Google Scholar
  11. (11).
    LADYZHENSKAYA O.A.: The mathematical theorie of viscous incompressible flow. Gordon and Breach (2 edition) (1969).Google Scholar
  12. (12).
    LIONS J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires-Dunod (1969).Google Scholar
  13. (13).
    LIONS J.L. et MAGENES E.: Problèmes aux limites non homogènes-Volume 1-Dunod (1968) Paris.Google Scholar
  14. (14).
    NASH J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Sic. Math. France 90 (1962) 487–497.CrossRefMATHGoogle Scholar
  15. (15).
    NISHIDA T. et MATSUMURA A.: The initial value problem for the equations of motion of viscous and heat concluctive gase. A paraître.Google Scholar
  16. (16).
    TANI: On the initial value problem for the system of fundamental equations describing the movement of compressible viscous fluid. Preprint.Google Scholar
  17. (17).
    TEMAM R.: The evolution Navier-Stokes equations-North Holland-Page 427–443.Google Scholar
  18. (18).
    KLAINERMAN S. et MAJDA A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids-CPAM-vol. XXXIV-481–524 (1981).ADSMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • A. Lagha-Benabdallah
    • 1
  1. 1.Université des Sciences et de la Technologie d’Alger Institut de MathématiquesFrance

Personalised recommendations