Advertisement

Fluid Dynamics pp 127-137 | Cite as

The linear transport operator of fluid dynamics

  • G. Geymonat
  • P. Leyland
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1047)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. BARDOS, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre. Ann. Scient. Ec. Norm. Sup., 4e Série, t. 3 (1970), 185–233.MATHGoogle Scholar
  2. [2]
    J. Necas, Méthodes Directes en Théorie des Equations Elliptiques. Edit. Masson, Paris, 1967.MATHGoogle Scholar
  3. [3]
    G. GEYMONAT, P. LEYLAND, Transport and Propagation of a linear acoustic perturbation through a flow in a bounded region. To appear.Google Scholar
  4. [4]
    C. BENDER, S. ORSZAG, Advanced Mathematical Methods for Scientists and Engineers. Ed. McGraw-Hill, 1975.Google Scholar
  5. [5]
    D. S. COHEN, Perturbation Theory, in Modern modelling of continuum phenomena. Lectures in Appl. Math., 16, AMS, 61–108 (1977).ADSGoogle Scholar
  6. [6]
    T. KATO, Perturbation Theory for Linear Operators. Second Ed., Springer-Verlag, 1976.Google Scholar
  7. [7]
    C. BAIOCCHI, Regolarità e unicità della soluzione di una equazione differenziale astratta, Rend. Sem. Mat. Padova, XXXV (1965), 380–417.MATHGoogle Scholar
  8. [8]
    C. BAIOCCHI, Sul problema misto per l’equazione parabolica del tipo del calore. Rend. Sem. Mat. Padova, XXXIV (1966), 80–121.MathSciNetMATHGoogle Scholar
  9. [9]
    J. L. LIONS, Equations Différentielles Opérationnelles et Problèmes aux Limites. Springer Verlag (1961).Google Scholar
  10. [10]
    J. L. LIONS, in "Equazioni differenziali astratte". C.I.M.E. 1o Ciclo 1963, Varenna.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • G. Geymonat
    • 1
  • P. Leyland
    • 2
  1. 1.Politecnico di TorinoIstituto MatematicoTorinoItaly
  2. 2.L.M.A.-C.N.R.S.Marseille Cedex 9France

Personalised recommendations