Advertisement

Smooth solutions for the equations of compressible and incompressible fluid flow

  • Andrew Majda
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1047)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    BEBERNES, J., and A. BRESSAN: "Thermal behavior for a confined reactive gas", J. Differential Equations 44 (1982), 118–133.ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    CHORIN, A.J.: "The evolution of a turbulent vortex", Comm. Math. Phys. 83 (1982), 517–536.ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    COURANT, R., and D. HILBERT: Methods of Mathematical Physics, Vol. II, Wiley-Interscience, New York, 1963.MATHGoogle Scholar
  4. [4]
    CRANDALL, M., and P. SOUGANIDIS: (in preparation).Google Scholar
  5. [5]
    DOUGLIS, A.: "Some existence theorems for hyperbolic systems of partial differential equations in two independent variables", Comm. Pure Appl. Math. 5 (1952), 119–154.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    EBIN, D.: "The motion of slightly compressible fluids viewed as motion with a strong constraining force", Ann. Math. 150 (1977), 102–163.MathSciNetMATHGoogle Scholar
  7. [7]
    EBIN, D.: "Motion of slightly compressible fluids in a bounded domain. I", Comm. Pure Appl. Math. 35 (1982), 451–487.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    EMBID, P., and A. Majda: "Slightly compressible combustible fluds" (in preparation).Google Scholar
  9. [9]
    GEYMONAT, G., and E. SANCHEZ-PALEWCIA: "On the vanishing viscosity limit for acoustic phenomena in a bounded region", Arch. Rational Mech. Anal. 75 (1981), 257–268.ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    HARTMAN, P., and A. WINTER: "On hyperbolic differential equations", Amer. J. Math. 74 (1952), 834–864.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    KASSOY, D. R., and J. POLAND: "The thermal explosion confined by a constant temperature boundary: II-the extremely rapid transient", SIAM J. Appl. Math. 41 (1981), 231–246.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    KASSOY, D. R., and J. BEBERNES: "Gasdynamic aspects of thermal explosions", Trans. of Twenty-Seventh Conference of Army Math., pp. 687–706.Google Scholar
  13. [13]
    KATO, T.: "Quasi-linear equations of evolution with applications to partial differential equations", Lecture Notes in Math. 448, Springer-Verlag (1975), 25–70.MathSciNetCrossRefGoogle Scholar
  14. [14]
    KATO, T.: "The Cauchy problem for quasi-linear symmetric hyperbolic systems", Arch. Rational Mech. Anal. 58 (1975), 181–205.ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    KLAINERMAN, S., and A. MAJDA: "Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids", Comm. Pure Appl. Math. 34 (1981), 481–524.ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    KLAINERMAN, S., and A. MAJDA: "Compressible and incompressible fluids", Comm. Pure Appl. Math. 35 (1982), 629–653.ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    KLAINERMAN, S., and R. KOHN: "Compressible and incompressible elasticity" (in preparation).Google Scholar
  18. [18]
    KREISS, H. O.: "Problems with different time scales for partial differential equations", Comm. Pure Appl. Math. 33 (1980), 399–441.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    LAX, P. D.: "Hyperbolic systems of conservation laws and the mathematical theory of shock waves", SIAM Reg. Conf. Lecture #11, Philadelphia, 1973.Google Scholar
  20. [20]
    LIONS, J. L.: Quelques Methodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.MATHGoogle Scholar
  21. [21]
    MAJDA, A.: "Equations for low Mach number combustion", (to appear in Comb. Sci. and Tech.).Google Scholar
  22. [22]
    MATKOWSKY, B. J., and G. I. SIVASHINSKY: "An asymptotic derivation of two models in flame theory associated with the constant density approximation", SIAM J. Appl. Math. 37 (1979), 686–699.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    MATSUMURA, A., and T. NISHIDA: "The initial value problem for the equations of motion of various and heat-conductive gases", J. Math. Kyoto Univ. 20 (1980), 67–104.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    MOSER, J.: "A rapidly convergent iteration method and nonlinear differential equations", Ann. Scuola Norm. Sup. Pisa 20 (1966), 265–315.MathSciNetMATHGoogle Scholar
  25. [25]
    TEMAM, R.: "Local existence of C solutions of the Euler equations of incompressible perfect fluids", in Turbulence and the Navier-Stokes Equations, Springer-Verlag, New York, 1976, 184–194.CrossRefGoogle Scholar
  26. [26]
    TEMAM, R.: The Navier-Stokes Equations, North Holland, Amsterdam, 1977.MATHGoogle Scholar
  27. [27]
    BEIRAO DA VEIGA, H.: "On the solutions in the large of the two-diemnsional flow of a non-viscous incompressible fluid" (preprint).Google Scholar
  28. [28]
    CHORIN, A. J.: "A numerical method for solving incompressible viscous flow problems", J. Comput. Phys. 2 (1967), 12–26.ADSCrossRefMATHGoogle Scholar
  29. [29]
    GHONIEM, A.F., A.J. CHORIN, and A. K. OPPENHEIM: "Numerical modelling of turbulent flow in a combustion tunnel", Philos. Trans. Roy. Soc. London Ser. A (1981), 1103–1119.Google Scholar
  30. [30]
    HALTINER, G. J. and R. T. WILLIAMS: Numerical Weather Prediction and Dynomic Meteorology, 2nd Edition, Wiley, New York, 1980.Google Scholar
  31. [31]
    MAJDA, A.: "The existence of multi-dimensional shock fronts", Memoirs Amer. Math. Soc. (to appear 1983).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Andrew Majda
    • 1
  1. 1.University of California, BerkeleyBerkeleyUSA

Personalised recommendations